Download Low Dimensional n-Lie Algebras

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Structure (mathematical logic) wikipedia , lookup

Non-negative matrix factorization wikipedia , lookup

Singular-value decomposition wikipedia , lookup

Quadratic form wikipedia , lookup

Determinant wikipedia , lookup

Jordan normal form wikipedia , lookup

Bra–ket notation wikipedia , lookup

Eigenvalues and eigenvectors wikipedia , lookup

Cartesian tensor wikipedia , lookup

Field (mathematics) wikipedia , lookup

Complexification (Lie group) wikipedia , lookup

Orthogonal matrix wikipedia , lookup

Four-vector wikipedia , lookup

Homological algebra wikipedia , lookup

Congruence lattice problem wikipedia , lookup

Exterior algebra wikipedia , lookup

Universal enveloping algebra wikipedia , lookup

Matrix multiplication wikipedia , lookup

Matrix calculus wikipedia , lookup

Boolean algebras canonically defined wikipedia , lookup

Geometric algebra wikipedia , lookup

Basis (linear algebra) wikipedia , lookup

Linear algebra wikipedia , lookup

Heyting algebra wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Cayley–Hamilton theorem wikipedia , lookup

Vertex operator algebra wikipedia , lookup

Clifford algebra wikipedia , lookup

Transcript
Mathematica Aeterna, Vol. 4, 2014, no. 2, 163 - 168
Low Dimensional n-Lie Algebras
BAI Ruipu
College of Mathematics and Computer Science,
Hebei University, Baoding, 071002, China
email: [email protected]
Wang Xiaoling
College of Yuanshi, Shijiazhuang University,
Shijiazhuang 051100, P.R.China
email:[email protected]
Abstract
This paper considers structures of low dimensional n-Lie algebras
over a field of characteristic 2. It first refined the classification of (n+1)dimensional n-Lie algebras over an algebraically closed field of characteristic 2. And then it provided an isomorphic criterion theorem for
(n + 2)-dimensional n-Lie algebras.
Mathematics Subject Classification: 17B05, 17D99.
Keywords: n-Lie algebra, criterion theorem, structure matrix.
1
Introduction
The notion of n-Lie algebras appeared in three different contexts. The n = 3
case first appeared in Nambu’s work [1] on simultaneous classical dynamics
of three particles. There, Nambu introduced 3-ary multilinear operations and
extended the Poisson bracket to the 3-ary bracket. In a mathematical development, Filippov [2] formulated the theory of n-Lie algebras based on the
(2n − 1)-fold Jacobi type identity and classified (n + 1)-dimensional n-Lie algebras over an algebraically closed field of characteristic zero. In 2004, metric
n-Lie algebras were obtained in the study of Plücker-type relations for orthogonal planes [3].
In recent years, n-Lie algebras have attracted much attention due to their
important applications in various areas such as string and membrane theories.
For instance, Bagger and Lambert [4] and Gustavsson [5] proposed a field
164
Bai Ruipu Bai, Xiaoling Wang
theory model for multiple M2-branes (BLG model) based on the metric 3-Lie
algebras. More applications of n-Lie algebras in string and membrane theories
can be found in [6]-[7].
It is known that up to isomorphisms there is a unique simple finite dimensional n-Lie algebra for n > 2 over an algebraically closed field of characteristic
zero [8], which is (n + 1)-dimensional. In the paper [9], it was shown that there
exist [ n2 ] + 1 classes simple (n + 1)-dimensional n-Lie algebras over a complete field of characteristic 2, and there are no simple (n + 2)-dimensional
n-Lie algebras. Therefore, A glaring discrepancy has emerged between the
structures of n-Lie algebras over the field of characteristic zero and the field
of characteristic 2. So it is significant for studying structures of (n + 1) and
(n + 2)-dimensional n-Lie algebras. In this paper we first refine the classification of (n + 1)-dimensional n-Lie algebras over an algebraically closed field
of characteristic 2 given in [9], and then prove the isomorphic criterion theorem for (n + 2)-dimensional n-Lie algebras over an algebraically closed field of
characteristic 2.
A vector space A over an algebraically field F of characteristic 2 is an nLie algebra if there is an n-ary multi-linear operation [ , · · · , ] satisfying the
following identities
[x1 , · · · , xn ] = [xσ(1) , · · · , xσ(n) ],
[x1 , · · · , xi , · · · , xj , · · · , xn ] = 0 if xi = xj for some i 6= j,
[[x1 , · · · , xn ], y2 , · · · , yn ] =
n
X
i=1
(1.1)
[x1 , · · · , [xi , y2 , · · · , yn ], · · · , xn ], (1.2)
where σ runs over the symmetric group Sn .
Denote by [A1 , A2 , · · · , An ] the subspace of A generated by all vectors
[x1 , x2 , · · · , xn ], where xi ∈ Ai , for i = 1, 2, · · · , n. The subalgebra A1 =
[A, A, · · · , A] is called the derived algebra of A. If A1 = 0, then A is an abelian
n-Lie algebra.
In the following, we suppose that F is an algebraically closed field of characteristic 2.
2
Structures of n-Lie Algebras
Theorem 2.1. Let A be an (n + 1)-dimensional n-Lie algebra over F and
e1 , e2 , · · · , en+1 be a basis of A, then one and only one of the following possibilities holds up to isomorphisms: (a) If dimA1 = 0, A is abelian.
(b) If dim A1 = 1, (b1 )[e2 , · · · , en+1 ] = e1 , (b2 )[e1 , · · · , en ] = e1 .
(c) If(dim A1 = 2, β ∈ F, β 6= 0,
(
[e1 , e3 , · · · , en+1 ] = e2 ,
[e1 , e3 , · · · , en+1 ] = e2 ,
(c1 )
(c2 )
[e2 , · · · , en+1 ] = e1 ;
[e2 , · · · , en+1 ] = e1 + βe2 ;
165
Low Dimensional n-Lie Algebras
(d) If dim A1 = r ≥ 3,













[ê1 , e2 , · · · , en+1 ] = e1 ,


[ê1 , e2 , · · · , en+1 ] = e1 ,
·····················





[e1 , · · · , êp , · · · , en+1 ] = ep ,
 [e1 , ê2 , · · · , en+1 ] = e2 ,
(d2 ) · · · · · · · · · · · · · · · · · · · · ·
(d1 ) [e1 , · · · , êp+1 , · · · , en+1 ] = er ,






[e1 , · · · , êr−1 , · · · , en+1 ] = er−1 ,
[e1 , · · · , êp+2 , · · · , en+1 ] = er−1 ,






 [e , · · · , ê , · · · , e


·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

1
r
n+1 ] = er ;


 [e , · · · , ê
1
p+q , · · · , en+1 ] = ep+1 ;
where q is even, p+q = r and 0 < q ≤ r, the symbol êi means that ei is omitted
in the bracket.
Proof. We only need to prove the case (c) since the other cases are proved
in [9]. By Theorem 2.1 in [9], when dim A1 = 2, the multiplication table of A
in the basis e1 , · · · , en+1 is given by (c1 )′ and (c2 ), where
(
[e1 , e3 , · · · , en+1 ] = αe2 ,
α ∈ F, α 6= 0.
[e2 , · · · , en+1 ] = e1 ;
√
Replacing e2 and en+1 by αe2 and √1α en+1 in (c1 )′ respectively, we get that
(
[e1 , e3 , · · · , en+1 ] = e2 ,
(c1 )′ is isomorphic to (c1 )
[e2 , · · · , en+1 ] = e1 .
We take a linear transformation of the basis e1 , · · · , en+1 by replacing e1 , e2
and en+1
by e1 +ae2 , e1 + a1 e2 and a1 en+1 , respectively, then (c2 ) is isomorphic to
(
[e1 , e3 , · · · , en+1 ] = e1 ,
(c2 )′
where a ∈ F, a + a1 = β. And the structure
[e2 , · · · , en+1 ] = a12 e2 ;
of A is completely determined by the action of ad(e3 , · · · , en+1 ) on A1 . From
(c2 )′ , the n-Lie algebras related to the case (c2 ) with nonzero coefficients β and
β ′ are isomorphic if and only if there exists a nonzero element s ∈ F and a
nonsingular (2 × 2) matrix B such that
(c1 )′
1
0
0
1
a2
!
= sB
−1
1
0
0
1
a21
!
B,
where a + a1 = β and a1 + a11 = β ′ . This implies that the n-Lie algebras
corresponding to the case (c2 ) with nonzero coefficients β and β ′ are isomorphic
if and only if a = a1 and a = a11 , that is, β = β ′ (it is clear that β = β ′ if and
only if a = a1 and a = a11 ). The result follows.
Suppose (A, [, · · · , ]1 ) and (A, [, · · · , ]2 ) are n-Lie algebras with two n-ary
Lie products [, · · · , ]1 and [, · · · , ]2 on a vector space A and e1 , e2 , · · · , en+2 be
a basis of A. For 1 ≤ i < j ≤ n + 2, set
ei,j = [e1 , · · · , êi , · · · , êj , · · · , en+2 ]1 =
n+2
X
k=1
bki,j ek , bki,j ∈ F,
(2.1)
166
Bai Ruipu Bai, Xiaoling Wang
B=






b11,2
b21,2
..
.
b11,3
b21,3
..
.
bn+2
bn+2
1,2
1,3
· · · b11,n+2 b12,3 · · · b1n+1,n+2
· · · b21,n+2 b22,3 · · · b2n+1,n+2
..
..
..
..
..
.
.
.
.
.
n+2
n+2
n+2
· · · b1,n+2 b2,3 · · · bn+1,n+2



,


then (e1,2 , e1,3 , · · · , e1,n+2 , e2,3 , · · · , e2,n+2 , · · · , en+1,n+2 ) = (e1 , e2 , · · · , en+2 )B.
) matrix
The multiplication of (A, [, · · · , ]1 ) is determined by ((n+2)× (n+1)(n+2)
2
B. And B is called the structure matrix of (A, [, · · · , ]1 ) with respect to the
basis e1 , e2 , · · · , en+2 .
Similarly, denote B̄ is the structure matrix of (A, [, · · · , ]2 ) with respect to
the basis e1 , e2 , · · · , en+2 , that is,
ēij = [e1 , · · · , êi , · · · , êj , · · · , en+2 ]2 =
n+2
X
k=1
b̄ki,j ek , b̄ki,j ∈ F,
(2.2)
(ē1,2 , ē1,3 , · · · , ē1,n+2 , ē2,3 , · · · , ē2,n+2 , · · · , ēn+1,n+2 ) = (e1 , · · · , en+2 )B̄.
By the above notations we have following criterion theorem.
Theorem 2.2. The n-Lie algebras (A, [, · · · , ]1 ) and (A, [, · · · , ]2 ) with products (2.1) and (2.2) on an (n + 2)-dimensional linear space A are isomorphic
if and only if there exists a nonsingular ((n + 2) × (n + 2)) matrix T = (ti,j )
such that
B = T −1 B̄T∗ ,
(2.3)
i,j
i,j
× (n+1)(n+2)
) matrix, and Tk,l
∈ F is the
where T∗ = (Tk,l
) is an ( (n+1)(n+2)
2
2
determinant defined by (2.5) below for 1 ≤ i, j, k, l ≤ n + 2.
Proof. If n-Lie algebra (A, [, · · · , ]1 ) is isomorphic to (A, [, · · · , ]2 ) under
an isomorphism σ. Let e1 , · · · , en+2 be a basis of A, and structure matrices
are determined by Eqs (2.1) and (2.2) with respect to the basis e1 , · · · , en+2
respectively, that is,
ei,j = [e1 , · · · , êi , · · · , êj , · · · , en+2 ]1 =
n+2
X
ēi,j = [e1 , · · · , êi , · · · , êj , · · · , en+2 ]2 =
n+2
X
bki,j ek , B = (bki,j )(n+2)× (n+2)×(n+2) ;
2
k=1
b̄ki,j ek , B̄ = (b̄ki,j )(n+2)× (n+2)×(n+2) .
2
k=1
Denote e′i = σ(ei ), 1 ≤ i ≤ n + 2 and the nonsingular ((n + 2) × (n + 2))
matrix T = (tij ) is the transition matrix of σ with respect to the basis e1 , e2 ,
· · · , en+2 , that is,
(σ(e1 ), · · · , σ(en+2 )) = (e′1 , · · · , e′n+2 ) = (e1 , e2 , · · · , en+2 )T.
e′k,l = [e′1 , · · · , ê′ k , · · · , ê′ l , · · · , e′n+2 ]2 = [
n+2
P
m=1
tm,1 em ,
n+2
P
m=1
tm,2 em , · · · ,
(2.4)
167
Low Dimensional n-Lie Algebras
n+2
P
m=1
tm,k−1 em ,
n+2
P
m=1
tm,k+1 em , · · · ,
n+2
P
m=1
tm,l−1 em ,
n+2
P
m=1
tm,l+1 em , · · · ,
n+2
P
m=1
tm,n+2 em ]2
1,2
1,3
1,n+2
2,3
n+1,n+2
= Tk,l
ē1,2 + Tk,l
ē1,3 + · · · + Tk,l
ē1,n+2 + Tk,l
ē2,3 + · · · + Tk,l
ēn+1,n+2 ,
i,j
i,j
where Tk,l is the determinant of the (n × n)-order matrix Wk,l , and

i,j
Wk,l
=






















·
·
..
.
t1,k−1
t2,k−1
..
.
t1,k+1
t2,k+1
..
.
·
·
..
.
t1,l−1
t2,l−1
..
.
t1,l+1
t2,l+1
..
.
·
·
..
.
t1,n+2
t2,n+2
..
.
ti−1,1
ti+1,1
..
.
·
·
..
.
ti−1,k−1
ti+1,k−1
..
.
ti−1,k+1
ti+1,k+1
..
.
·
·
..
.
ti−1,l−1
ti+1,l−1
..
.
ti−1,l+1
ti+1,l+1
..
.
·
·
..
.
ti−1,n+2
ti+1,n+2
..
.
tj−1,1
tj+1,1
..
.
· tj−1,k−1
· tj+1,k−1
..
..
.
.
tj−1,k+1
tj+1,k+1
..
.
· tj−1,l−1
· tj+1,l−1
..
..
.
.
tj−1,l+1
tj+1,l+1
..
.
· tj−1,n+2
· tj+1,n+2
..
..
.
.
tn+1,1 · tn+1,k−1 tn+1,k+1 · tn+1,l−1 tn+1,l+1 · tn+1,n+2
tn+2,1 · tn+2,k−1 tn+2,k+1 · tn+2,l−1 tn+2,l+1 · tn+2,n+2
where 1 ≤ i < j ≤ n + 2, 1 ≤ k 6= l ≤ n + 2. Denote

T∗ =





















t1,1
t2,1
..
.
1,2
T1,2
1,2
T1,3
·
1,2
T1,n+2
1,2
T2,3
1,2
· Tn+1,n+2
1,3
T1,2
1,3
T1,3
·
1,3
T1,n+2
1,3
T2,3
1,3
· Tn+1,n+2
..
.
..
.
..
.
..
.
..
.
n,n+2
T1,2
n,n+2
T1,3
·
n,n+2
T1,n+2
n,n+2
T2,3
..
.
..
.
n,n+2
· Tn+1,n+2
n+1,n+2
n+1,n+2
n+1,n+2
n+1,n+2
n+1,n+2
T1,2
T1,3
· T1,n+2
T2,3
· Tn+1,n+2
then T∗ is a ( (n+1)(n+2)
×
2
(n+1)(n+2)
)
2






















(2.5)











,









(2.6)
matrix, and
(e′1,2 , e′1,3 , · · · , e′1,n+2 , e′2,3 , · · · , e′n+1,n+2 )
= (ē1,2 , ē1,3 , · · · , ē1,n+2 , ē2,3 , · · · , ēn+1,n+2 )T∗ .
From identities (2.1) and (2.2)
(e′1,2 , e′1,3 , · · · , e′1,n+2 , e′2,3 , · · · , e′n+1,n+2 ) = (e1 , e2 , · · · , en+2 )B̄T∗ .
(2.7)
d ), · · · , σ(e
d ), · · · ,
e′k,l = [e′1 , · · · , ê′k , · · · , ê′l , · · · , e′n+2 ]2 = [σ(e1 ), · · · , σ(e
k
l
σ(en+2 )]2 = σ([e1 , · · · , êk , · · · , êl , · · · , en+2 ]1 ) = σ(ekl ) =
n+2
P
P n+2
(
s=1 i=1
(e′1,2 , e′1,3 , · · · , e′1,n+2 , e′2,3 , · · · , e′n+1,n+2 ) = (e1 , e2 , · · · , en+2 )T B.
bikl )tsi es .
(2.8)
168
Bai Ruipu Bai, Xiaoling Wang
It follows (2.7) and (2.8) that
T B = B̄T∗ , that is B = T −1 B̄T∗ .
On the other hand, we take a linear transformation σ of A, such that
σ(e1 , · · · , en+2 ) = (σ(e1 ), · · · , σ(en+2 )) = (e1 , · · · , en+2 )T. By the similar discussion to above, σ is an n-Lie isomorphism from (A, [, · · · , ]1 ) to (A, [, · · · , ]2 ).
The proof is completed.
ACKNOWLEDGEMENT. This research is supported by NSF of China
(11371245).
References
[1] Y. Nambu, Generalized Hamiltonian Dynamics, Phys. Rev. D7 (1973),
2405-2412.
[2] V. T. Filippov, n-Lie algebras, Sibirsk. Mat. Zh. 26 (1985), 126-140.
[3] J. M. Figueroa-O’Farrill, and G. Papadopoulos, Plücker-type relations for
orthogonal planes, J. Geom. Phys. 49 (2004), 294-331.
[4] J. Bagger, and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D77 (2008), 065008.
[5] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys.
B 811 (2009), 66-76.
[6] G. Papadopoulos, M2-branes, 3-Lie Algebras and Plucker relations, JHEP
05 (2008), 054.
[7] J. Gomis, G. Milanesi, and J. G. Russo, Bagger-Lambert Theory for General Lie Algebras, JHEP 06 (2008), 075.
[8] W. X. Ling, On the structure of n-Lie algebras. PhD thesis, Siegen, 1993.
[9] R. Bai, X. Wang, W. Xiao and H. An, The structure of low dimensional
n-Lie algebras over a field of characteristic 2, Linear Alg. Appl. 428 (2008),
1912-1920.
[10] R. Bai, Q. Li, Structures of solvable 3-Lie algebras, Mathematica Aeterna,
2014, In press.
Received: February, 2014