Download PHYS_2326_022609

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Klystron wikipedia , lookup

Surge protector wikipedia , lookup

Superconductivity wikipedia , lookup

Nanogenerator wikipedia , lookup

Galvanometer wikipedia , lookup

Rectiverter wikipedia , lookup

Opto-isolator wikipedia , lookup

TRIAC wikipedia , lookup

Electromigration wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Current mirror wikipedia , lookup

Electric charge wikipedia , lookup

Ohm's law wikipedia , lookup

Transcript
The homework assigned on Tuesday
will not be due until Thursday, March 5.
Forces Acting on Dielectrics
We can either compute force directly
(which is quite cumbersome), or use
relationship between force and energy
F  U
CV 2
Considering parallel-plate capacitor U 
2
Force acting on the capacitor, is pointed inside,
hence, E-field work done is positive and U - decreases
U V 2 C
Fx  

x
2 x
x – insertion length
Two capacitors in parallel
C  C1  C2 
0
d
w( L  x) 
V 2  0w
Fx 
( K  1)
2 d
K 0
wx
d
w – width of the plates
More charge here
constant force
Electric Current
Charges in Motion – Electric Current
Electric Current – a method to deliver energy
Very convenient way to transport energy
no moving parts (only microscopic charges)
Electric currents is in the midst of electronic circuits
and living organisms alike
Motion of charges in electric fields
Force on a particle : F  qE
Accelerati on : a  F / m
d 2r
Equation of motion : m 2  qE(r, t )
dt
When E is time - independen t, the total energy is conserved :
mv 2
 q (r )  const
2
Motion in a uniform electric field
For x - components :
a  qE / m
v(t )  v0  at
at 2
x(t )  x0  v0t 
2
Other components of v do not change
Deflection by a uniform electric field
x  vi t
qE 2
y
t
2m
y   x 2 : Parabolic trajector y
v fx  vi
qE l
v fy  
m vi
Application: Cathode Ray Tube
Electric Current in Conductors
In electrostatic situations – no E-field inside
There is no net current. But charges (electrons)
still move chaotically, they are not on rest.
On the other side, electrons do not move with
constant acceleration.
Electrons undergo collisions with ions. After
each collision, the speed of electron changes
randomly.
The net effect of E-field – there is slow net
motion, superimposed on the random motion
Vchaotic ~ 106 m / s
Vdrift ~ 104 m / s
Direction of the Electric Current
is associated with the rate of flow of charge
ΔQ
dQ
through surface A : I 

Δt
dt
1 Coulomb
Unit : 1 Ampere 
1 second
Current density is the current per unit area :
J
I
A
Current in a flash light ~ 0.5 A
In a household A/C unit ~ 10-20 A
TV, radio circuits ~ 1mA
Computer boards ~ 1nA to 1pA
Current, Drift Velocity, Current Density
Q  qnAvd t

J

I Q

 qn v d [ A / m 2 ]
A At
Concentration of mobile charge
carriers per unit volume: n
Average speed in the direction
of current (drift speed): vd
For a variety of charge carriers:


J   | qi | ni v d
i
Current density J, is a vector
while total current I is not


I   J d S
Example: An 18-gauge copper wire has nominal
diameter of 1.02 mm and carries a constant current
of 1.67 A to 200W lamp. The density of free electrons
is 8.5 X 1026 el/m3. Find current density and drift velocity
J
I
4I

A d2
J  nevd ;
2  106 A / m2
vd  1.5  104
m/ s
Why, then, as we turn on the switch, light comes
immediately from the bulb?
E-field acts on all electrons at once (E-field
propagates at ~2 108 m/s in copper)
Electric current in ionic solution of NaCl is due to
both positive Na+ and negative Cl- charges flow
Ohm’s Law
Current density J and electric field E are established inside a conductor when a
potential difference is applied –
Not electrostatics – field exists inside and charges move!
In many materials (especially metals)
over a range of conditions:
J = σE or J = E/r
r is the E-independent resistivity
σ=1/r is the conductivity
This is Ohm’s law
(empirical and restricted)
Conductors, Insulators and
Semiconductors
r(T) = r0[1+a(T-T0)]
Resistance of a straight wire
V
I  J  A  E  A A
L
1
I  V (V  Vb  Va  b  a )
R
L
Resistance R 
A
1 Volt
Unit: 1 Ohm () 
1 Ampere
1
Resistivity
r

Unit:
V=IR
1 m
L
Rr
A
Water Flow Analogy
Interpreting Resistance
I-V curves
ohmic
nonohmic
(linear)
(non-linear)
Resistivity and Temperature
r(T) = r0[1+a(T-T0)]
Electrical Shock
“It’s not the voltage but the current.”
The current is what actually causes a shock - human body has resistance of ~500,000 
with dry skin - ~100  wet! Requires conducting path.
Can cause: (1) burning of tissue by heating, (2) muscle contractions, (3) disruption of
cardiac rhythms.
Current (A)
Effect
0.001
Can be felt
0.005
Is painful
0.010
Causes spasms
0.015
Causes loss of muscle control
0.070
Goes through the heart - fatal after more than
1 second
Charging on Astronaut Space Suit in Auroral Zone: Potentially hazardous situation
– EVA Suit Specified to –40 V
• anodized coating arcing occurred
at –68V in MSFC test
– Possible Sneak-Circuit
• 1 mA safety threshold
Metal waist and neck rings and other metal
portions of the suit make contact with the
sweat soaked ventilation garment providing
possible conducting path for discharge through
astronaut’s thoracic cavity.
Safety
 Surface of spacesuit could charge to high
voltage leading to subsequent discharge.
Display
and
Control
Module
(DCM)
Tether
Discharge to the station through safety tether:
• Tether is a metallic cable - connected to
astronaut via non-conducting (nylon)
housing.
• Station maintained at plasma potential arc path closed when tether gets
wrapped around astronaut.
Mini Work Station
(MWS)
Body Restraint
Tether (BRT)
Radial current leakage in a coaxial cable
I
J(r) 
2rL
V
b

a

rI b
E(r)dr   rJ(r) dr 
ln
2L a
a
r
b
R
ln
2L a
b