Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Moving Electrical Charge FB qv B FB iL B dFB idL B Magnetic Field Moving Electrical Charge The net torque on magnetic dipole moment the loop is not zero. iAnˆ B = B The Hall Effect 1 iB V H nq 1 Hall coefficient nq The magnetic force on moving charge Moving Electrical Charge B ? Chapter 33 The Magnetic Field of a Current The Electric Field Due to a Charge r P E q 4 0 r 2 q 1 E q, 2 r rˆ The Magnetic Field Due to a Motion Charge q r P v 0 q1v rˆ 0 qv r BB q, 2 ,2 v, sin 3 4 r r 4 r 01 qvqsin rˆ 1 qr B (E ) 22 3 4 0 rr 4 0 r μ0 is the permeability constant. 0 4 10 7 T m/A 0 10 7 T m/A 4 The Magnetic Field of a Current Due to a Motion Charge A straight wire segment r P 0 q1v rˆ 0 qv r BB q, 2 ,2 v, sin 3 4 r r 4 r 0 dqv rˆ 0 dqv r dB 2 3 Biot-Savart law 4 r 4 r q v 0 ids rˆdq 0 ids r ddBqv dq 2 ds ids3 4 drt dt 4 r direction : dB 0 idzr sin 00 idzd iddz 3 44 ( zr2 3 d 2 ) 3 2 4 r 0i L d , B L 2d id 2d i Lz 2 0 0 B dB 44d0( L2( z 2 dd22))3122 4 Two Parallel Current 0i1 B1 nˆ1 2 r1 0i2 B2 nˆ2 2 r2 Superposition principle Vector sum B B1 B2 The force exerted by one wire on another 0i1 B1 2d F21 i2 L B1 0i1i2 L F21 i2 LB1 2d i1 i2 2dF21 The definition of 2 i the ampere 0 L F • ib F ia d • ib ia d When F 2 10 7 N , d 1m, L 1m, i 1A Parallel currents attract, and antiparallel currents repel. Example 0 di 0 i(dx / a) dB y 2 d x 2 d x y 0i a / 2 dx By dBy 2a a / 2 d x d P x 0i d a / 2 ln 2a d a / 2 0 di 0 i(dx / a) dB d 2 d 2 Example 00ii((dx dx // aa)) cos dBx dB cos 2 22R Rsec sec dR cos R sec 0i0i (dx / a ) Bx dBx d 2 22aR sec 2 x R tan dx R sec d 0i 1 a 0i tan Bx d a 2R 2a 0i 0i -1 a a R, tan a / 2 R, B R 0, /2, B 2R 2R 2a The Magnetic Field of a Current A circular current loop Biot-Savart law 0 ids rˆ 0 ids r dB 2 4 r 4 r 3 dBz dB cos , dB 0 0iR0ids2RR 1 ds B dBz 3 20 4 4r r( R 2 z 2 ) 2 0iR 2 0i ; 2( R z ) 2 2 3 when z 0, B 2 0 pm B 2z 3 pe pe qd , E 4 0 x 3 1 2R 0iR 2 magnetic dipole If z R , B moment 2z3 0i (R 2 ) B 2z 3 The Magnetic Field of a Solenoid The Magnetic Field of a Solenoid B 0iR 2 2( R 2 z 2 ) dB 3 ; 2 0 (nidz ) R 2 2[ R ( z d ) ] 2 B 0 niR 2 2 L/2 [R 3 2 dz 3 2 ( z d ) ] The field outside the ideal solenoid is zero. 0 ni L 2d L 2d ( ) 1 1 2 [R 2 (L 2 d )2 ] 2 [R 2 (L 2 d )2 ] 2 2 - L/2 2 If L>>R, 2 B=μ0ni. The Magnetic Field of a Solenoid B 0iR 2 2( R 2 z 2 ) dB 3 ; 2 0 (nidz ) R 2 2[ R ( z d ) ] 2 B 0 niR 2 2 L/2 [R 3 2 dz 3 2 ( z d ) ] The field outside the ideal solenoid is zero. 2 - L/2 2 2 B -L/2 L/2 z parallel-plate capable for electric field solenoid for magnetic field E B E=s/0. B 0nI The Electric Field Due to a Charge E q rˆ 4 0 r q E ds 2 0 Gauss’ Law E dl 0 s The Magnetic Field Due to a Moving Charge 0 qv rˆ B 2 4 r 0 ids rˆ dB 4 r 2 B ds 0 B dl 0i Ampere’s Law B dl 0i Ampere’s Law s is an Ampere loop, i is net current passingthr ough surface boundedby the loop. B dl B cosdl L L 0 I rd L 2r 0 I 2 d 2 0 0 I B dl B cosdl L L 0 I rd L 2r 0 I 2 d 2 0 0 I dl cos rd dl cos r d B dl B dl 0 I ' dl0 I' cos ' Bdl cos B B d(srd ) 0 i ( r ' d ) 2 r 2 r ' s 0 Ampere’s Law A straight wire segment 0id L 2 dz B dB 4 L 2 ( z 2 d 2 ) 3 2 0i L 4d ( L2 d 2 ) 12 4 0i when L d , B 2d B ds Bds B(2d ) 0i 0i B 2d Application of Ampere’s law Long, straight wire (r<R) r 2 B ds B(2r ) 0i R 2 0ir B 2R 2 r R B ds B(2r ) 0i B 0i B 2r R r A solenoid B2 B ds 0 nhi loop2 B1 B ds ab bc cd Bh 0 nhi From loop2, da Bds Bh ab B 0 ni hB1+ (-h)B2=0 B1= B2 A toroid B ds B(2r ) 0iN 0iN B 0 ni 2r Same as a solenoid The field outside a solenoid Bout 2 r 0i Bout 0i 2 r Bin 0 ni Bout 0i 2 r 1 Bin 0 ni 2rn Bout 1, Bout 0 Bin Exercises P768-769 10, 13, 15 Problems P772 8, 9 A interesting question for interaction force between electric / magnetic field and moving or resting charged particle A charged particle at rest Moving charged particle Whether a charged particle moves or not depends on the chosen frame. Electric field Both electric and magnetic field Whether can we conclude that both electric and magnetic field Depend on the chosen frame? Einstein’s Postulates: The laws of physics are the same in all inertial reference frames. Are these two conclusions contradictory? Is it true? 2017/5/25 [email protected] 25 y In the frame K (at rest) In the frame K Both electric and magnetic force are zero. ’ In the frame K Magnetic force: x r I - - - - - - Fm = qvd B¢ = vd S Electric force: + + + + + + y’ K’ In the frame (with moving electrons) B´ vd I vd - Fm - - l+' = l+ / 1- (vd / c)2 L-' = L / 1- (vd / c)2 l-' = l- 1- (vd / c)2 ql+¢ vd2 FE = qE = q = 2pe0 r 2pe0 rc 2 r We have: I ¢ = l+¢ vd , c2 =1/ (e0m0 ) S + ++ + + + 2017/5/25 L+' = L 1- (vd / c)2 l+¢ - l-¢ x’ - - - m0qvd I ¢ 2p r [email protected] Therefore FE = 26 m0qvd I ¢ 2p r In different inertial reference frame, the results come from the electric or magnetic field is same. Transformation equations of E and B: E x E x E y E z Bx Bx 1 1 2 1 1 2 ( E y vBz ) ( E z vBy ) 1 v By ( By 2 Ez ) 2 c 1 1 v Bz ( Bz 2 E y ) 2 c 1