Download PHYS-36

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 36 Inductance
Capacitance C
++++++-
q  CV
dU  dqV  qdq C
U
q
0
0
U   dU   qdq / C
di
dB
d
iB



dt
dt
dt
di Inductance
 L  L
dt unit of L is henry (H)
di
dU   dq   idt  L idt
dt
u
U   dU
1 2
1
1
2
 q / C  C (V )  qV
2
2
2
Electric energy
0
1 2
  Lidi  Li
0
2
i
Magnetic energy
Calculating the capacitance
Procedure:
1. Suppose that the capacitor is charged, with ±q on
the two plates respectively.
2. Find the electric field E in the region between the
plates.
3. Evaluate the potential difference between the
positive and negative plates, by using the

formula:
 
V  V  V   E  ds

4.The expected capacitance is then:
C  q V
Calculating the Inductance
Procedure:
1. Suppose i
2. Find the magnetic field B, FB
3. Evaluate the EMF by using the formula:
d B
di
    L
dt
dt
d  Ldi
  Li
L

i
Calculating the Inductance
B   0 ni ΦB  μ 0 niA
NΦB  μ0 NniA
N  nl
NΦB 0 NnAi
2
L

 0 n lA
i
i
L is independent of i and depends
only on the geometry of the device.
Calculating the Inductance
ΦB  BdA


L
i
i

b
a
 0i
ldr  l b
2r
 0 ln
i
2 a
Calculating the capacitance
q

C
V
20l

b
b
a 20 rl dr ln a
q
q
a
a
b
b
Inductance of a Toroid
L?
 0iN
B  0 ni 
2r
b  iN
 0iNh b dr
  b
0
ΦB   B  dA  a Bhdr  a 2r hdr  2 a r
NΦB  0 N h b

ln
L
2
a
i
2
 0iNh b

ln
2
a
Inductors with Magnetic Materials
 0 N Nh h b b
LL m
ln ln
22 a a


B   m B0  L   m L0
2
0
   m0
2
L

i
C
0 A
C
d
C'   e
0 A
d

A
d
Ferromagnetic cores (κm >>1, κm =103 - 104)
provide the means to obtain large inductances.
RC Circuits
Combine Resistor and Capacitor in Series
a
Switch at position (a)
(b)

b
R
C
LR Circuits
q(t )  Ce(1t/ RCet / RC )
q(tt)/ RC
t / RC
Vc (t )  e   (1  e
)
C
dq   t /RCt / RC
i (t ) 
ee
dt R R
RC Circuits
Combine Resistor and Capacitor in Series
at→∞, i=ε/R. Switch at position (a)
di
di
  iR  L


iR

L

0
R
b

dt
dt
C  di  dt  di   R dt

  iR L
L
t=0, i=0
i
R
LR Circuits
i
t
di
R
ΔVR=-iR
 dt t =L/R
inductive
0 i  time constant
0
L
tR
R
t


L
t )
i

(
1

e
)
i 
R
R  t
R
ln
i
L

R
di
i  L
dt
RC Circuits
Combine Resistor and Capacitor in Series
at→∞, i=ε/R.
Switch at position (b)
R

t

d
i
L
R
b
iR  L  0 i  e

dt
R
C
t=0, i=0
LR Circuits
t =L/R
i

R
e


t  0, i 
R
ΔVR=iR
i
di
i  L
dt
t  , i  0
t
t
22
1
ddqqq dq22 q
2




0

L


q
2
2
2
LC
C
dt
dt
CL
dt
q  q0 cos(t   )
L-C circuit
i ?
L
C
dq
i
 q0 sin( t   )
Energy
conservation
dt
q
i
q
di
L 0
C
dt
dq
i
dt
t
1 q02
1 2 2 2
2
UE 
cos (t   ) U B  Lq0  sin (t   )
2
2C
Electric energy
Magnetic energy
Damped and Forced oscillations
d 2 x b dx
2



x0
2
dt
m dt
x(t )  xm e bt / 2 m cos(t  )
If there are resistances
in circuit, the U is no longer
constant.
   m cos  t
Resonance 
1
2
b  R , m  L,  
L
LC
C
 Rt / 2 L
R
q(t )  q0e
cos(t  )
  2  ( R/ 2 L) 2
di q
dq
 L   iR  0 i  
dt C
dt
d 2 q R dq 1


q
 0m cos  t
2
dt
L dt LC
Energy Storage in a Magnetic Field
K a
di
  iR  L  0
dt
di
2
i  i R  Li
dt
ΔVR=-iR
 i  L
i= (dq/dt)= (dq)/dt, the power by the emf device.
i2R, the power consuming in the resistor.
Li(di/dt), the rate at which energy is stored in the space
of the inductor, it can be put out, when switch to b
dU
di
 Li
dt
dt
dU  Lidi
0
 dU  
U
0
i
Lidi
1 2
U  Li
2
di
dt
2
q
1q
UE 
2 C q
energy is stored in the electric field
1 2
U B  Li
2
L   0 n 2lA
inductance
UB
i
energy is stored in the magnetic field
i
magnetic field
1
uE   0 E 2
2
UB
UB 
2
B
U B 0 n 2
uB 

i 
2 0
V
2
2
 0 n 2lA
2
i2
B  0 ni
Analogy to Simple Harmonic Motion
x  xm sin( t  )
2
d x
2
 x 0
2
dt
k
 
m
2
dx
v
 xm  cos(t  )
dt
Us 
1 2
kx
2
K
1 2
mv
2
q  q0 sin( t  )
2
d q
1
2
2
 q  0  
2
LC
dt
q  x Lm
i v 1 C k
dq
i
 q0 cos(t  )
dt
2
1q
UE 
2C
UB 
1 2
Li
2
Electric Field

E
q
40 r


F  qE
2
rˆ
Magnetic Field
  0 qv  rˆ
B
2
4r

  0ids  rˆ
dB 
4r 2

 
F  qv  B

 
dF  ids  B
Electric Field


P  qd
1
p
E
40 x 3
 
t  P E

Magnetic Field

  iA


0 
B

3
2z
  
t  B
Electric Field
 

E  E0  E '
Magnetic Field
 

B  B0   0 M
 1 
E
E0 ( e  1)


B   m B0 ( m  1,  m  1)
   e 0
   m 0
e


 Es  dl  0
  q
 E  ds 
0
 
 B  dl  0i Ampere Law
 
 B  ds  0
Gauss Law
Electric Field
Magnetic Field
Induction

 
d
B 
 Ei  dl   i   dt   t  dS
d  (v  B)  ds
   (v  B)  ds
Electric Field
Magnetic Field
N B
di
  L
L
dt
i
q
q  C V C 
V
q(t )  C (1  e
t / RC
2
1q
UE 
2C
1
2
uE   0 E
2
)
i

R
(1  e
R
 t
L
1 2
U B  Li
2
1 B2
uB 
2 0
)
Electric Field
Magnetic Field
1
 
LC
2
2
2
0
q  q0 sin( t  )
dq
i
 q0 cos(t  )
dt
q
1q
2
UE 

sin (t   )
2C
2C
1 2 1 2 2 2
U B  Li  Lq  cos (t   )
2
2
0
qx
iv
Lm 1 C k
Example
UE  ?
2
q
1
q
1
) 2 2 2 2
uE   0 E 2   0 (
8  0l r
2
20lr
2
q 2 dr
q2
dU B  uB dV 2 2 2 (2rl )(dr )
40l r
8  0l r
2
b q
q2
b
dr

ln
UB  
a 4 l r
40l a
0
20l
q
q
 b

C
q
b
V
a 20 rl dr ln
a
a
b
q2
UE 
2C
q2
b

ln
40l a
Example
UB  ?
2
1 B2

i
1  0i 2
uB 

(
)  02 2
b
2 0
8 r
2 0 2r
a
 0i 2
 0i 2l dr
dU B  uB dV  2 2 (2rl )(dr ) 
8 r
4 r
2
2
b  i l dr

i
l b
0
0
UB  

ln
a 4
r
4
a
ΦB  BdA
L
2

2
Li

i
l b
0
i
i
UB 

ln
b  i
2
4
a
0


a
2r
i
ldr
 0l b

ln
2 a
Exercises
P839-841 9, 10, 23, 41
Problems
P842
3, 5