Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 36 Inductance Capacitance C ++++++- q  CV dU  dqV  qdq C U q 0 0 U   dU   qdq / C di dB d iB    dt dt dt di Inductance  L  L dt unit of L is henry (H) di dU   dq   idt  L idt dt u U   dU 1 2 1 1 2  q / C  C (V )  qV 2 2 2 Electric energy 0 1 2   Lidi  Li 0 2 i Magnetic energy Calculating the capacitance Procedure: 1. Suppose that the capacitor is charged, with ±q on the two plates respectively. 2. Find the electric field E in the region between the plates. 3. Evaluate the potential difference between the positive and negative plates, by using the  formula:   V  V  V   E  ds  4.The expected capacitance is then: C  q V Calculating the Inductance Procedure: 1. Suppose i 2. Find the magnetic field B, FB 3. Evaluate the EMF by using the formula: d B di     L dt dt d  Ldi   Li L  i Calculating the Inductance B   0 ni ΦB  μ 0 niA NΦB  μ0 NniA N  nl NΦB 0 NnAi 2 L   0 n lA i i L is independent of i and depends only on the geometry of the device. Calculating the Inductance ΦB  BdA   L i i  b a  0i ldr  l b 2r  0 ln i 2 a Calculating the capacitance q  C V 20l  b b a 20 rl dr ln a q q a a b b Inductance of a Toroid L?  0iN B  0 ni  2r b  iN  0iNh b dr   b 0 ΦB   B  dA  a Bhdr  a 2r hdr  2 a r NΦB  0 N h b  ln L 2 a i 2  0iNh b  ln 2 a Inductors with Magnetic Materials  0 N Nh h b b LL m ln ln 22 a a   B   m B0  L   m L0 2 0    m0 2 L  i C 0 A C d C'   e 0 A d  A d Ferromagnetic cores (κm >>1, κm =103 - 104) provide the means to obtain large inductances. RC Circuits Combine Resistor and Capacitor in Series a Switch at position (a) (b)  b R C LR Circuits q(t )  Ce(1t/ RCet / RC ) q(tt)/ RC t / RC Vc (t )  e   (1  e ) C dq   t /RCt / RC i (t )  ee dt R R RC Circuits Combine Resistor and Capacitor in Series at→∞, i=ε/R. Switch at position (a) di di   iR  L   iR  L  0 R b  dt dt C  di  dt  di   R dt    iR L L t=0, i=0 i R LR Circuits i t di R ΔVR=-iR  dt t =L/R inductive 0 i  time constant 0 L tR R t   L t ) i  ( 1  e ) i  R R  t R ln i L  R di i  L dt RC Circuits Combine Resistor and Capacitor in Series at→∞, i=ε/R. Switch at position (b) R  t  d i L R b iR  L  0 i  e  dt R C t=0, i=0 LR Circuits t =L/R i  R e   t  0, i  R ΔVR=iR i di i  L dt t  , i  0 t t 22 1 ddqqq dq22 q 2     0  L   q 2 2 2 LC C dt dt CL dt q  q0 cos(t   ) L-C circuit i ? L C dq i  q0 sin( t   ) Energy conservation dt q i q di L 0 C dt dq i dt t 1 q02 1 2 2 2 2 UE  cos (t   ) U B  Lq0  sin (t   ) 2 2C Electric energy Magnetic energy Damped and Forced oscillations d 2 x b dx 2    x0 2 dt m dt x(t )  xm e bt / 2 m cos(t  ) If there are resistances in circuit, the U is no longer constant.    m cos  t Resonance  1 2 b  R , m  L,   L LC C  Rt / 2 L R q(t )  q0e cos(t  )   2  ( R/ 2 L) 2 di q dq  L   iR  0 i   dt C dt d 2 q R dq 1   q  0m cos  t 2 dt L dt LC Energy Storage in a Magnetic Field K a di   iR  L  0 dt di 2 i  i R  Li dt ΔVR=-iR  i  L i= (dq/dt)= (dq)/dt, the power by the emf device. i2R, the power consuming in the resistor. Li(di/dt), the rate at which energy is stored in the space of the inductor, it can be put out, when switch to b dU di  Li dt dt dU  Lidi 0  dU   U 0 i Lidi 1 2 U  Li 2 di dt 2 q 1q UE  2 C q energy is stored in the electric field 1 2 U B  Li 2 L   0 n 2lA inductance UB i energy is stored in the magnetic field i magnetic field 1 uE   0 E 2 2 UB UB  2 B U B 0 n 2 uB   i  2 0 V 2 2  0 n 2lA 2 i2 B  0 ni Analogy to Simple Harmonic Motion x  xm sin( t  ) 2 d x 2  x 0 2 dt k   m 2 dx v  xm  cos(t  ) dt Us  1 2 kx 2 K 1 2 mv 2 q  q0 sin( t  ) 2 d q 1 2 2  q  0   2 LC dt q  x Lm i v 1 C k dq i  q0 cos(t  ) dt 2 1q UE  2C UB  1 2 Li 2 Electric Field  E q 40 r   F  qE 2 rˆ Magnetic Field   0 qv  rˆ B 2 4r    0ids  rˆ dB  4r 2    F  qv  B    dF  ids  B Electric Field   P  qd 1 p E 40 x 3   t  P E  Magnetic Field    iA   0  B  3 2z    t  B Electric Field    E  E0  E ' Magnetic Field    B  B0   0 M  1  E E0 ( e  1)   B   m B0 ( m  1,  m  1)    e 0    m 0 e    Es  dl  0   q  E  ds  0    B  dl  0i Ampere Law    B  ds  0 Gauss Law Electric Field Magnetic Field Induction    d B   Ei  dl   i   dt   t  dS d  (v  B)  ds    (v  B)  ds Electric Field Magnetic Field N B di   L L dt i q q  C V C  V q(t )  C (1  e t / RC 2 1q UE  2C 1 2 uE   0 E 2 ) i  R (1  e R  t L 1 2 U B  Li 2 1 B2 uB  2 0 ) Electric Field Magnetic Field 1   LC 2 2 2 0 q  q0 sin( t  ) dq i  q0 cos(t  ) dt q 1q 2 UE   sin (t   ) 2C 2C 1 2 1 2 2 2 U B  Li  Lq  cos (t   ) 2 2 0 qx iv Lm 1 C k Example UE  ? 2 q 1 q 1 ) 2 2 2 2 uE   0 E 2   0 ( 8  0l r 2 20lr 2 q 2 dr q2 dU B  uB dV 2 2 2 (2rl )(dr ) 40l r 8  0l r 2 b q q2 b dr  ln UB   a 4 l r 40l a 0 20l q q  b  C q b V a 20 rl dr ln a a b q2 UE  2C q2 b  ln 40l a Example UB  ? 2 1 B2  i 1  0i 2 uB   ( )  02 2 b 2 0 8 r 2 0 2r a  0i 2  0i 2l dr dU B  uB dV  2 2 (2rl )(dr )  8 r 4 r 2 2 b  i l dr  i l b 0 0 UB    ln a 4 r 4 a ΦB  BdA L 2  2 Li  i l b 0 i i UB   ln b  i 2 4 a 0   a 2r i ldr  0l b  ln 2 a Exercises P839-841 9, 10, 23, 41 Problems P842 3, 5