Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro Mathematical modeling and numerical analysis of quantum systems with applications to nanosciences Firenze, 16 dicembre 2005 MULTIBAND TRANSPORT MODELS FOR SEMICONDUCTOR DEVICES Giovanni Frosali Dipartimento di Matematica Applicata “G.Sansone” [email protected] Multiband transport models for semiconductor devices n. 1 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Research group on semicoductor modeling at University of Florence Dipartimento di Matematica Applicata “G.Sansone” Giovanni Frosali Chiara Manzini (Munster) Michele Modugno (Lens-INFN) Dipartimento di Matematica “U.Dini” Luigi Barletti Dipartimento di Elettronica e Telecomunicazioni Stefano Biondini Giovanni Borgioli Omar Morandi Università di Ancona Lucio Demeio Others: G.Alì (Napoli), C.DeFalco (Milano), A.Majorana(Catania), C.Jacoboni, P.Bordone et. al. (Modena) Multiband transport models for semiconductor devices n. 2 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 TWO-BAND APPROXIMATION • The spectrum of the Hamiltonian of a quantum particle in a periodic potential is continuous and characterized by (allowed) "energy bands“ separated by (forbidden) “band gaps". • In the presence of additional potentials, the projections of the wave function on the energy eigenspaces (Floquet subspaces) are coupled by the Schrödinger equation, which allows interband transitions to occur. • Negibible coupling: single-band approximation • In some nanometric semiconductor device like Interband Resonant Tunneling Diode, transport due to valence electrons becomes important. Multiband transport models for semiconductor devices 2 1 Energy (ev) • This is no longer possible when the architecture of the device is such that other bands are accessible to the carriers. RITD Band Diagram 0 -1 -2 0 10 20 30 40 Position (nm) 50 60 n. 3 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 • Multiband models are needed: the charge carriers can be found in a super-position of quantum states belonging to different bands. • Different methods are currently employed for characterizing the band structures and the optical properties of heterostructures, such as envelope functions methods (effective mass theory), tight-binding, pseudopotential methods,… OUR APPROACH TO THE PROBLEM Schrödinger-like models (Barletti, Borgioli, Modugno, Morandi, etc.) Wigner function approach (Bertoni, Jacoboni, Borgioli, Frosali, Zweifel, Barletti, Manzini, etc.) Hydrodynamics multiband formalisms (Alì, Barletti, Borgioli, Frosali, Manzini, etc) Multiband transport models for semiconductor devices n. 4 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 MULTIBAND TRANSPORT QDD General Multiband Models WIGNER APPROACH HYDRODYNAMIC MODELS SCHRÖDINGER APPROACH QUANTUM DRIFT-DIFFUSION MODELS KANE model MeF model Multiband transport models for semiconductor devices CE expansion n. 5 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Envelope function models H E H We filter the solution ( x) Multiband “kp” system Multiband transport models for semiconductor devices 2 2m0 2 Vper ( x ) U ext ( x ) 1 ( x ) 2 ( x ) n ( x ) n. 6 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 WIGNER APPROACH Lucio Demeio - collaborazioni con Paolo Bordone, Carlo Jacoboni Luigi Barletti Giovanni Frosali – collaborazione con Paul Zweifel Giovanni Borgioli [1] G. Borgioli, G. Frosali and P. Zweifel, Wigner approach to the two-band Kane model for a tunneling diode, Transp. Teor.Stat. Phys. 32 3, 347-366 (2003). Multiband transport models for semiconductor devices n. 7 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture for Schrödinger-like models Density matrix 1 x 1 y x, y n 1 1 n n n d i H, H x H y dt Multiband Wigner function 1 ip f ij x, p W x / 2 m , x / 2 m e d ij 2 Evolution equation Multiband transport models for semiconductor devices df i W H x H y W -1 f dt n. 8 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture: Two band Wigner model f cc p f cc icc f cc * m t f p vv f vv ivv f vv * m t f i cv i * p 2 f cv icv f cv 4m t i 2 P f cv m0 E g 2 P f cv m0 E g P f cc f vv m0 E g Fp ij f ij Vi x / 2m V j x / 2m Fp1 f ij Fp f ij V x / 2m Fp -1 f ij Multiband transport models for semiconductor devices n. 9 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture: •Two band Wigner model f cc p f cc icc f cc * m t f p vv f vv ivv f vv * m t f i cv i * p 2 f cv icv f cv 4m t i 2 P f cv m0 E g 2 P f cv m0 E g P f cc f vv m0 E g fii x, v W ii intraband dynamic: zero coupling if the external potential is null Multiband transport models for semiconductor devices n. 10 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture: Two band Wigner model f cc p f cc icc f cc * m t f p vv f vv ivv f vv * m t f cv i * i p 2 f cv icv f cv t 4m i 2 P f cv m0 Eg 2 P f cv m0 Eg P f cc f vv m0 Eg fii x, v W ii • intraband dynamic: zero coupling if the external potential is null • interband dynamic: coupling like G-R via fcv x, p Multiband transport models for semiconductor devices n. 11 di 30 Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 12 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Kane model 2 2 Kane 1Kane 2 1Kane Kane 2 i V P c 1 2 t 2 m x m0 x 0 Kane 2 2 Kane 2 Kane Kane 2 2 1 i V P v 2 t 2m0 x 2 m0 x Problems in the practical use of the Kane model: • Strong coupling between envelope function related to different band index, even if the external field is null • Poor physical interpretation n( x ) Kane i x 2 i • Critical choice in the cut off for the band index Multiband transport models for semiconductor devices n. 13 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze MEF model: first order 2 1 i t 2m* c 2 2 i * t 2mv 2 2 1 P U Ec U 1 2 2 x m0 E g x 2 2 2 P U Ev U 2 1 2 x m0 E g x Physical meaning of the envelope function: Ri cell | n dx n ( Ri ) 2 |n The quantity i x represents the mean probability density to find the electron into n-th band, in a lattice cell. 2 Multiband transport models for semiconductor devices n. 14 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze MEF model: first order 2 1 i t 2m* c 2 2 i * t 2mv 2 2 1 P U Ec U 1 2 2 x m0 E g x 2 2 2 P U Ev U 2 1 2 x m0 E g x Effective mass dynamics: • intraband dynamic Zero external electric field: exact electron dynamic Multiband transport models for semiconductor devices n. 15 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze MEF model: first order 2 1 i t 2m* c 2 2 i * t 2mv 2 2 1 P U Ec U 1 2 2 x m0 E g x 2 2 2 P U Ev U 2 1 2 x m0 E g x Coupling terms: • intraband dynamic • interband dynamic T (n n, k k ) first order contribution of transition rate of Fermi Golden rule Multiband transport models for semiconductor devices n. 16 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture: Wigner function: f x, p 1 ip x / 2 m x / 2 m e d 2 Phase plane representation: f x, p pseudo probability function CLASSICAL LIMIT 0 Wigner equation Liouville equation Moments of Wigner function: x n x f x, p dp 2 m J x p f x, p dp Multiband transport models for semiconductor devices n. 17 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 MEF model characteristics: Hierarchy of “kp” multiband effective mass models, where the asimptotic parmeter is the “quasi-momentum” of the electron • Direct physical meaning of the envelope function • Easy approximation (cut off on the index band) • Highlight the action of the electric field in the interband transition phenomena • Easy implementation: Wigner and quntum-hydrodynamic formalism Multiband transport models for semiconductor devices n. 18 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze First Well-posedness order two band of the MEF problem model 2 E 1 2m* c 2 E * 1 2 m v 2 of the Hamiltonian • The spectrum 2 1 P U Ec Uis not 1 bounded 2 from 2 x m0 E g x below • This prevent2 usPtogive 2 2 U an useful Ev “a U priori” 2 estimates forthe 1 2 non linear x m0 E g x | n dx n ( Ri ) Poisson-Schrödinger problem 2 | n n-band Projector Ri cell Electron density Ri cell 2P ( x) dx 1 ( Ri ) m0 Eg n 2 2 Multiband transport models for semiconductor devices nn ' n ( Ri ) n ' ( Ri ) n. 19 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Well-posedness of the problem • We get a bounded spectrum developing the diagonal term of the Hamiltonian to a higher order in “k” 2 2 2 1 P V E ( E U ) 2 c 1 1 * 2 2mc x m0 Eg x 2 4 2 2 P V E 2 ( Ev U ) 2 1 4 * 2 2 x 2mv x m0 Eg x Multiband transport models for semiconductor devices n. 20 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Boundary condition Reservoir •The region of interest is bounded by two charge reservoirs •Outside the domain we will assume that the electron is represented by a Bloch wave Bloch wave Multiband transport models for semiconductor devices n. 21 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Boundary condition Bloch wave Envelope function approximation ik x ( x ) e n Sum of travelling waves n n n Multiband transport models for semiconductor devices n. 22 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Boundary condition Bloch wave Envelope function approximation ik x ( x ) e n Sum of travelling waves n n n Continuity of n ( x) , 'n ( x) on the interface One dimensional case: Mixed type B.C. n (0) 'n (0) Transparent boundary condition Multiband transport models for semiconductor devices n. 23 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Existence and uniqueness of the MeF problem q ,U W 2, ( 1 , 2 ) H1 H 2 2 2 2 1 P E ( q ) E U 1 c 1 2mc* x 2 m0 E g 2 2 4 2 2 E ( q) 2 x 4 2m* x 2 Ev U 2 m v 0 Transparent Boundary Conditions U 2 x P U 1 E g x E(q) is the energy of the incident electron • q is the liner momentum of the incident electron and it can vary from 0 to Multiband transport models for semiconductor devices n. 24 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Wigner picture: 1 ,.., n t n n-th band component General Schrödinger-like model matrix of operator d i H dt Density matrix 1 x 1 y x, y n 1 1 n n n Multiband transport models for semiconductor devices d i H, H x H y dt n. 25 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Non linear problem Existence and uniqueness n L2 Existence of 2, U W solution of the problem: 2 2 2 1 P E ( q ) E U 1 c 1 * 2 2 m x m0 Eg c 2 2 2 2 4 E (q ) 2 4 * Ev U 2 2 x 2 m x m0 v 2 U n x 2 2 2P 2 n f (q) 1 2 m E 1 2 dq 0 g Multiband transport models for semiconductor devices U 2 x P U 1 Eg x n. 26 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Linear problem Existence and uniqueness AE Injective operator AE 0 0 E Ej AE H2b.MEF IE H 2b.MeM self-adjoint operator with compact resolvent There exist a numerable sequence Multiband transport models for semiconductor devices E j of eigenvalues n. 27 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Linear problem Existence and uniqueness q ,U W 2, 1 , 2 H1 2 2 2 1 P E ( q ) E U 1 c 1 * 2 2 m x m0 Eg c 2 2 2 2 4 E (q ) 2 x 4 2m* x 2 Ev U 2 m v 0 Transparent Boundary Conditions The linear problem admit a solution U 2 x P U 1 Eg x 1, 2 H1 H2 for almost every q Multiband transport models for semiconductor devices n. 28 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Non linear problem Existence and uniqueness Theorem: the MFM-Poisson system admits a unique solution n,V with V W 2, ; n H1 (0,1) Fixed point theorem Modified problem E (q) E(q) i V T (V ) : M | V W 2, M 0,1 Gummel map Multiband transport models for semiconductor devices Asymptotic limit n, V n ,V 0 n. 29 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Non linear problem Asymptotic limit 0 Single band case 2 * 2 1 0 2mc* x2 (V E) 0 L 2 2mc* Energy estimate 2 2 2 (V E ) 2 C 2 x 2 Multiband transport models for semiconductor devices n. 30 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Non linear problem Asymptotic limit 2 2 2 1 P E ( q ) E U c 1 1 * 2 2 m x m0 Eg c 4 2 2 2 2 E (q) Ev U 2 2 4 * 2 x 2mv x m0 0 U 2 x P U 1 Eg x A priori estimate: Energy 2 2 2 2 x2 2 x 2 x 1 Vn C 2P n 1 ( Ri ) 2 ( Ri ) 1 ( Ri ) 2 ( Ri ) m0 Eg 2 2 Multiband transport models for semiconductor devices n. 31 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 The physical environment Electromagnetic and spin effects are disregarded, just like the field generated by the charge carriers themselves. Dissipative phenomena like electronphonon collisions are not taken into account. The dynamics of charge carriers is considered as confined in the two highest energy bands of the semiconductor, i.e. the conduction and the (nondegenerate) valence band, around the point k 0 where kis the "crystal" wave vector. The point k 0 is assumed to be a minimum for the conduction band and a maximum for the valence band. The Hamiltonian introduced in the Schrödinger equation is H Ho V , where h2 H o Vper 2m V per is the periodic potential of the crystal and V an external potential. Multiband transport models for semiconductor devices Vai alla 8 n. 32 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Interband Tunneling: PHYSICAL PICTURE Interband transition in the 3-d dispersion diagram. The transition is from the bottom of the conduction band to the top of the val-ence band, with the wave number becoming imaginary. Then the electron continues propagating into the valence band. Kane model Multiband transport models for semiconductor devices Vai alla 9 n. 33 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze KANE MODEL The Kane model consists into a couple of Schrödinger-like equations for the conduction and the valence band envelope functions. Let c ( x , t ) be the conduction band electron envelope function and be the valence band envelope function. v ( x, t ) • m is the bare mass of the carriers, Vi Ei V , i c, v • Ec ( Ev ) is the minimum (maximum) of the conduction (valence) band energy • P is the coupling coefficient between the two bands (the matrix element of the gradient operator between the Bloch functions) Multiband transport models for semiconductor devices n. 34 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Remarks on the Kane model • The envelope functions c ,v are obtained expanding the wave function on the ikx basis of the periodic part of the Bloch functions bn ( x, t ) e un (k , x), evaluated at k=0, 0 0 ( x) c ( x)uc v ( x)uv where uc0,v ( x) uc,v (0, x) . • The external potential V affects the band energy terms Vc (Vv ), but it does not appear in the coupling coefficient P . • There is an interband coupling even in absence of an external potential. • The interband coefficient P increases when the energy gap between the two bands E g increases (the opposite of physical evidence). Multiband transport models for semiconductor devices n. 35 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze MEF MODEL (Morandi, Modugno, Phys.Rev.B, 2005) The MEF model consists in a couple of Schrödinger-like equations as follows. A different procedure of approximation leads to equations describing the intraband dynamics in the effective mass approximation as in the LuttingerKohn model, which also contain an interband coupling, proportional to the momentum matrix element P. This is responsible for tunneling between different bands caused by the applied electric field proportional to the xderivative of V. In the two-band case they assume the form: Multiband transport models for semiconductor devices n. 36 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 * • mc (and mv* ) is the isotropic effective mass • c and v are the conduction and valence envelope functions • Eg is the energy gap • P is the coupling coefficient between the two bands Which are the steps to attain MEF model formulation? • Expansion of the wave function on the Bloch functions basis • Introduction in the Schrödinger equation Multiband transport models for semiconductor devices n. 37 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze • Approximation • Simplify the interband term in k 0 • Introduce the effective mass approximation • Develope the periodic part of the Bloch functions order un (k , x) to the first • The equation for envelope functions in x-space is obtained by inverse Fourier transform MEF model can be obtained as follows: Multiband transport models for semiconductor devices See: Morandi, Modugno, Phys.Rev.B, 2005 Vai a lla 14 n. 38 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 • projection of the wave function on the Wannier basis x Ri where Ri nW which depends on are the atomic sites positions, i.e. where the Wannier basis functions can be expressed in terms of Bloch functions as • The use of the Wannier basis has some advantages. As a matter of fact the amplitudes n ( Ri ) that play the role of envelope functions on the new basis, can be obtained from the Bloch coefficients by a simple Fourier transform Multiband transport models for semiconductor devices n. 39 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Performing the limit to the continuum to the whole space and by using standard properties of the Fourier transform, equations for the coefficients n ( Ri ) are achieved. Comments on the MEF MODEL • The envelope functions c ,v can be interpreted as the effective wave functions of the of the electron in the conduction (valence) band • The coupling between the two bands appears only in presence of an external (not constant) potential • The presence of the effective masses (generally different in the two bands) implies a different mobility in the two bands. • The interband coupling term reduces as the energy gap vanishes in the absence of the external field V. Multiband transport models for semiconductor devices Eg increases, and n. 40 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Physical meaning of the envelope functions A more direct physical meaning can be ascribed to the hydrodynamical variables derived from the MEF approach. The envelope functions and are the projections of on the Wannier basis, and therefore the corresponding multi-band densities represent the (cellaveraged) probability amplitude of finding an electron on the conduction or valence bands, respectively. cM vM This simple picture does not apply to the Kane model. The Kane envelope functions and the MEF envelope functions are linked by the relation 2 K j M j P i hM , m0 ( E j Eh ) j , h c, v. This fact confirms that even in absence of external potential , when no interband transition can occur, the Kane model shows a coupling of all the envelope functions. Multiband transport models for semiconductor devices n. 41 di 30 Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 n. 42 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Hydrodynamic version of the MEF MODEL We can derive the hydrodynamic version of the MEF model using the WKB method (quantum system at zero temperature). Look for solutions in the form iS ( x, t ) c ( x, t ) nc ( x, t ) exp c v ( x, t ) nv ( x, t ) exp iSv ( x, t ) we introduce the particle densities Then n nij ( x, t ) i ( x, t ) j ( x, t ). c c v v is the electron density in conduction and valence bands. We write the coupling terms in a more manageable way, introducing the complex quantity ncv : c v nc nv e Multiband transport models for semiconductor devices i with : Sc Sc Vai alla 21 n. 43 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze We introduce the rescaled Planck constant mlR2 parameter tR and the effective mass where m lR , t R with the dimensional are typical dimensional quantities is assumed to be equal in the two bands MEF model reads in the rescaled form: m P V with K mEg Multiband transport models for semiconductor devices n. 44 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze Quantum hydrodynamic quantities • Quantum electron current densities J ij Im( i j ) when i=j , we recover the classical current densities J c ncSc J v nvSv • Osmotic and current velocities uc uos ,c iuel ,c uos ,i ni , ni uel ,i uv uos ,v iuel ,v Ji Si , i c, v ni • Complex velocities given by osmotic and current velocities can be expressed in terms of nc , nv , J c , J v Multiband transport models for semiconductor devices plus the phase difference n. 45 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 The quantum counterpart of the classical continuity equation Taking account of the wave form, the MEF system gives rise to Summing the previous equations, we obtain the balance law where, compared to the Kane model, the “interband density” Is missing. c v The previous balance law is just the quantum counterpart of the classical continuity equation. Multiband transport models for semiconductor devices n. 46 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Next, we derive a system of coupled equations for phases S c , S v , obtaining a system equivalent to the coupled Schrödinger equations. Then we obtain a system for the currents J c and J v The equations can be put in a more familiar form with the quantum Bohm potentials It is important to notice that, differently from the uncoupled model, equations for densities and currents are not equivalent to the original equations, due to the presence of . Multiband transport models for semiconductor devices n. 47 di 30 Dipartimento di Matematica Applicata Università di Firenze Recalling that and Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 ncv , uc , and uv are given by the hydrodynamic quantities nc , nv , J c , J v , we have the HYDRODYNAMIC SYSTEM for the MEF model Multiband transport models for semiconductor devices n. 48 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze The DRIFT-DIFFUSION scaling We rewrite the current equations, introducing a relaxation time , in order to simulate all the mechanisms which force the system towards the statistical mechanical equilibrium. In analogy with the classical diffusive limit for a one-band system, we introduce the scaling t t , J c J c , J v J v , , Finally, after having expressed the osmotic and current velocities, in terms of the other hydrodynamic quantities, as tends to zero, we formally obtain the ZER0-TEMPERATURE QUANTUM DRIFT-DIFFUSION MODEL for the MEF system. Multiband transport models for semiconductor devices n. 49 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Hydrodynamic version of the MEF MODEL Multiband transport models for semiconductor devices n. 50 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 NON ZERO TEMPERATURE hydrodynamic model We consider an electron ensemble which is represented by a mixed quantum mechanical state, to obtain a nonzero temperature model for a Kane system. We rewrite the MEF system for the k-th state, with occupation probability k We use the Madelung-type transform We define ik nik exp iSik / , i c, v J ck , J vk , k , ncvk , uck , uvk . We define the densities and the currents corresponding to the two mixed states Performing the analogous procedure and with an appropriate closure, we get Multiband transport models for semiconductor devices n. 51 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Isothermal QUANTUM DRIFT-DIFFUSION for the MEF MODEL Multiband transport models for semiconductor devices n. 52 di 30 Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Dipartimento di Matematica Applicata Università di Firenze REMARKS We derived a set of quantum hydrodynamic equations from the two-band MEF model. This system, which is closed, can be considered as a zerotemperature quantum fluid model. Starting from a mixed-states condition, we derived the corresponding non zero-temperature quantum fluid model, which is not closed. In addition to other quantities, we have the tensors vc and c , v , cv similar to the temperature tensor of kinetic theory. NEXT STEPS • Closure of the quantum hydrodynamic system • Numerical treatment • Heterogeneous materials • Generalized MEF model Multiband transport models for semiconductor devices n. 53 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Thanks for your attention !!!!! Multiband transport models for semiconductor devices n. 54 di 30 Dipartimento di Matematica Applicata Università di Firenze Giornata di lavoro sulle Nanoscienze Firenze 16 dicembre 2005 Non linear Schrödinger-like Poisson problem • Description of the model Multiband (MEF) model coupled with the Poisson eqn. • Mathematical problem • Well-posedness and B.C. • Existence and uniqueness of the solution for the MEF-P [Ben Abdallah,Morandi] • Numerical applications Application to IRTD Multiband transport models for semiconductor devices n. 55 di 30