* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Data link layer (error detection/correction, multiple access protocols)
Deep packet inspection wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Computer network wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Backpressure routing wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Airborne Networking wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Internet protocol suite wikipedia , lookup
IEEE 802.1aq wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Announcement Homework #3 due tomorrow midnight Project #3 is out 1 Last class Routing in the Internet Hierarchical routing RIP OSPF BGP 2 Hierarchical Routing: Intra- and Inter-AS Routing 3c 3a 3b AS3 1a 2a 1c 1d 1b Intra-AS Routing algorithm 2c AS2 AS1 Inter-AS Routing algorithm Forwarding table 2b Forwarding table is configured by both intra- and inter-AS routing algorithm Intra-AS sets entries for internal dests Inter-AS & Intra-As sets entries for external dests 3 RIP ( Routing Information Protocol) Distance vector algorithm Included in BSD-UNIX Distribution in 1982 Distance metric: # of hops (max = 15 hops) # of hops: # of subnets traversed along the shortest path from src. router to dst. subnet (e.g., src. = A) u v A z C B D w x y destination hops u 1 v 2 w 2 x 3 y 3 z 2 4 OSPF (Open Shortest Path First) “open”: publicly available Uses Link State algorithm LS packet dissemination Topology map at each node Route computation using Dijkstra’s algorithm Link costs configured by the network administrator OSPF advertisement carries one entry per neighbor router Advertisements disseminated to entire AS (via flooding) Carried in OSPF messages directly over IP (rather than TCP or UDP 5 Hierarchical OSPF 6 Overview BGP Data link layer Introduction and services Error detection and correction Multiple access protocols 7 Internet inter-AS routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. 2. 3. Obtain subnet reachability information from neighboring ASs. Propagate the reachability information to all routers internal to the AS. Determine “good” routes to subnets based on reachability information and policy. Allows a subnet to advertise its existence to rest of the Internet: “I am here” 8 BGP basics Pairs of routers (BGP peers) exchange routing info over TCP conections: BGP sessions Note that BGP sessions do not correspond to physical links. When AS2 advertises a prefix to AS1, AS2 is promising it will forward any datagrams destined to that prefix towards the prefix. AS2 can aggregate prefixes in its advertisement 3c 3a 3b AS3 1a AS1 2a 1c 1d 1b 2c AS2 2b eBGP session iBGP session 9 Distributing reachability info With eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. 1c can then use iBGP do distribute this new prefix reach info to all routers in AS1 1b can then re-advertise the new reach info to AS2 over the 1b-to-2a eBGP session When router learns about a new prefix, it creates an entry for the prefix in its forwarding table. 3c 3a 3b AS3 1a AS1 2a 1c 1d 1b 2c AS2 2b eBGP session iBGP session 10 Path attributes & BGP routes When advertising a prefix, advert includes BGP attributes. prefix + attributes = “route” Two important attributes: AS-PATH: contains the ASs through which the advert for the prefix passed: AS 67 AS 17 NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.) When gateway router receives route advert, uses import policy to accept/decline. 11 BGP route selection Router may learn about more than 1 route to some prefix. Router must select route. Elimination rules: 1. 2. 3. 4. Local preference value attribute: policy decision Shortest AS-PATH Closest NEXT-HOP router: hot potato routing Additional criteria 12 BGP routing policy legend: B W provider network X A customer network: C Y Figure 4.5-BGPnew: a simple BGP scenario A,B,C are provider networks X,W,Y are customer (of provider networks) X is dual-homed: attached to two networks X does not want to route from B via X to C .. so X will not advertise to B a route to C 13 BGP routing policy (2) legend: B W provider network X A customer network: C Y A advertises to B the path AW Figure 4.5-BGPnew: a simple BGP scenario B advertises to X the path BAW Should B advertise to C the path BAW? 14 BGP routing policy (2) legend: B W provider network X A customer network: C Y A advertises to B the path AW Figure 4.5-BGPnew: a simple BGP scenario B advertises to X the path BAW Should B advertise to C the path BAW? No way! B gets no “revenue” for routing CBAW since neither W nor C are B’s customers B wants to force C to route to w via A B wants to route only to/from its customers! 15 Why different Intra- and Inter-AS routing ? Policy: Inter-AS: admin wants control over how its traffic routed, who routes through its net. Intra-AS: single admin, so no policy decisions needed Scale: hierarchical routing saves table size, reduced update traffic Performance: Intra-AS: can focus on performance Inter-AS: policy may dominate over performance 16 Overview BGP Data link layer Introduction and services Error detection and correction Multiple access protocols 17 The Data Link Layer Our goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing reliable data transfer, flow control: done! instantiation and implementation of various link layer technologies 18 Overview BGP Data link layer Introduction and services Error detection and correction Multiple access protocols 19 Link Layer: Introduction Some terminology: “link” hosts and routers are nodes communication channels that connect adjacent nodes along communication path are links wired links wireless links LANs layer-2 packet is a frame, encapsulates datagram data-link layer has responsibility of transferring datagram from one node to adjacent node over a link 20 Link layer: context Datagram transferred by different link protocols over different links: e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link Each link protocol provides different services e.g., may or may not provide rdt over link transportation analogy trip from Princeton to Lausanne limo: Princeton to JFK plane: JFK to Geneva train: Geneva to Lausanne tourist = datagram transport segment = communication link transportation mode = link layer protocol travel agent = routing algorithm 21 Link Layer Services Framing, link access: encapsulate datagram into frame, adding header, trailer channel access if shared medium “MAC” addresses used in frame headers to identify source, dest • different from IP address! Reliable delivery between adjacent nodes we learned how to do this already (chapter 3)! seldom used on low bit error link (fiber, some twisted pair) wireless links: high error rates • Q: why both link-level and end-end reliability? 22 Link Layer Services (more) Flow Control: pacing between adjacent sending and receiving nodes Error Detection: errors caused by signal attenuation, noise. receiver detects presence of errors: • signals sender for retransmission or drops frame Error Correction: receiver identifies and corrects bit error(s) without resorting to retransmission Half-duplex and full-duplex with half duplex, nodes at both ends of link can transmit, but not at same time 23 Adaptors Communicating datagram sending node frame adapter rcving node link layer protocol frame adapter link layer implemented in receiving side “adaptor” (aka NIC) looks for errors, rdt, flow control, etc Ethernet card, PCMCI extracts datagram, passes card, 802.11 card to rcving node sending side: encapsulates datagram in a frame adds error checking bits, rdt, flow control, etc. 24 Overview BGP Data link layer Introduction and services Error detection and correction Multiple access protocols 25 Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields • Error detection not 100% reliable! • protocol may miss some errors, but rarely • larger EDC field yields better detection and correction 26 Parity Checking Single Bit Parity: Detect single bit errors Two Dimensional Bit Parity: Detect and correct single bit errors 0 0 27 Checksumming: Cyclic Redundancy Check view data bits, D, as a binary number choose r+1 bit pattern (generator), G goal: choose r CRC bits, R, such that <D,R> exactly divisible by G (modulo 2) receiver knows G, divides <D,R> by G. If non-zero remainder: error detected! can detect all burst errors less than r+1 bits • a burst of length greater than r+1 bits dtctd. with prob. 1-(1/2)^r widely used in practice (ATM, HDCL) 28 CRC Example (modulo-2 arithmetic without without carries) Want: D.2r XOR R = nG equivalently: D.2r = nG XOR R equivalently: if we divide D.2r by G, want remainder R R = remainder[ D.2r G ] 29 Overview BGP Data link layer Introduction and services Error detection and correction Multiple access protocols 30 Multiple Access Links and Protocols Two types of “links”: point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) traditional Ethernet upstream cable 802.11 wireless LAN 31 Multiple Access protocols single shared broadcast channel two or more simultaneous transmissions by nodes: interference collision if node receives two or more signals at the same time multiple access protocol distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit communication about channel sharing must use channel itself! no out-of-band channel for coordination 32 Ideal Multiple Access Protocol Broadcast channel of rate R bps 1. When one node wants to transmit, it can send at rate R. 2. When M nodes want to transmit, each can send at average rate R/M 3. Fully decentralized: no special node to coordinate transmissions no synchronization of clocks, slots 4. Simple 33 MAC Protocols: a taxonomy Three broad classes: Channel Partitioning divide channel into smaller “pieces” (time slots, frequency, code) allocate piece to node for exclusive use Random Access channel not divided, allow collisions “recover” from collisions “Taking turns” Nodes take turns, but nodes with more to send can take longer turns 34 Channel Partitioning MAC protocols: TDMA TDMA: time division multiple access access to channel in "rounds" each station gets fixed length slot (length = pkt trans time) in each round unused slots go idle example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle 35 Channel Partitioning MAC protocols: FDMA FDMA: frequency division multiple access channel spectrum divided into frequency bands each station assigned fixed frequency band unused transmission time in frequency bands go idle example: 6-station LAN, 1,3,4 have pkt, frequency frequency bands bands 2,5,6 idle 36 Random Access Protocols When node has packet to send transmit at full channel data rate R. no a priori coordination among nodes two or more transmitting nodes ➜ “collision”, random access MAC protocol specifies: how to detect collisions how to recover from collisions (e.g., via delayed retransmissions) Examples of random access MAC protocols: slotted ALOHA ALOHA CSMA, CSMA/CD, CSMA/CA 37 Slotted ALOHA Assumptions all frames same size time is divided into equal size slots, time to transmit 1 frame nodes start to transmit frames only at beginning of slots nodes are synchronized if 2 or more nodes transmit in slot, all nodes detect collision Operation when node obtains fresh frame, it transmits in next slot no collision, node can send new frame in next slot if collision, node retransmits frame in each subsequent slot with prob. p until success 38 Slotted ALOHA Pros single active node can continuously transmit at full rate of channel highly decentralized: only slots in nodes need to be in sync simple Cons collisions, wasting slots idle slots clock synchronization 39