* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Internet
IEEE 802.1aq wikipedia , lookup
Distributed firewall wikipedia , lookup
Network tap wikipedia , lookup
Computer network wikipedia , lookup
Net neutrality law wikipedia , lookup
Airborne Networking wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Asynchronous Transfer Mode wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Wake-on-LAN wikipedia , lookup
计算机网络(Internet) 历史,现状与未来 舒炎泰 2009 计算机网络 Transportation service: move objects horse, train, truck, airplane ... Communication network: move information bird, fire, telegraph, telephone, 计算机网络…Internet … A Taxonomy of Communication Networks Communication networks can be classified based on the way in which the nodes exchange information: Communication Network Switched Communication Network Broadcast Communication Network 广播,电视 Packet-Switched Circuit-Switched Communication Communication Network Network Datagram 电话 Virtual Circuit Network Network Internet The example 通话在 C 到 D (只经过一个本地交换机) 的连接上进行 通话在 A 到 B (经过四个交换机) 的连接上进行 思考:电话交换对于计算机是否适合? 效率/成本 应用-实时 中继线 A 用户线 ( C ( D ( 交换机 中继线 交换机 交换机 交换机 B ( 用户线 Circuit Switching (电路交换-电话) A node (switch) in a circuit switching network incoming links Node outgoing links Circuit Switching: Multiplexing/Demultiplexing Time divided in frames and frames divided in slots Relative slot position inside a frame determines which conversation the data belongs to Needs synchronization between sender and receiver In case of non-permanent conversations Needs to dynamic bind a slot to a conservation How to do this? Timing in Circuit Switching Host 1 Host 2 Node 1 Node 2 processing delay at Node 1 propagation delay between Host 1 and Node 1 Circuit Establishment propagation delay between Host 2 and Node 1 Data Transmission DATA Circuit Termination Packet Switching (分组/包交换) 1961 报文 1101000110101010110101011100010011010010 假定这个报文较长 不便于传输 在发送端,先把较长的报文划分成较短的、固定长度的数据 段。 Computer networks self-development ----packet switching 分组交换网以“分组”(也称 包)作为数据传输单元 依次把各分组发送到接收端(假定接收端在左边)。 分组 1 首部 数 据 分组 2 首部 数 据 分组 3 首部 数 据 Computer networks development ----packet switching 最后,在接收端把收到的数据恢复成为原来的报文。 报文 1101000110101010110101011100010011010010 数 据 数 据 数 据 这里我们假定分组在传输过程中没有出现差错,在转发时也 没有被丢弃。 Packet Switching (分组/包交换) 1961 Data are sent as formatted bit-sequences, so-called packets Packets have the following structure: Header Header Data Trailer and Trailer carry control information (e.g., destination address, check sum) Each packet is passed through the network from node to node along some path (Routing) At each node the entire packet is received, stored briefly, and then forwarded to the next node (Store-and-Forward Networks) Typically no capacity is allocated for packets Packet Switching - Example Router E Router A Router Congested Router C Router D Router B Router F Timing of Datagram Packet Switching Host 1 transmission time of Packet 1 at Host 1 Node 1 Packet 1 Host 2 Node 2 propagation delay between Host 1 and Node 2 Packet 2 Packet 1 Packet 3 processing delay of Packet 1 at Node 2 Packet 2 Packet 1 Packet 2 Packet 3 Packet 3 Packet Switching (分组/包交换) 1961 A node in a packet switching network incoming links Node Memory outgoing links Packet Switching: Multiplexing/Demultiplexing Data from any conversation can be transmitted at any given time How to tell them apart? Use meta-data (header) to describe data Datagram Packet Switching Each packet is independently switched Each packet header contains destination address No resources are pre-allocated (reserved) in advance Example: IP networks Model: Queuing System Customers Queue Server Queuing System Use Queuing models to Describe the behavior of queuing systems Evaluate system performance Response Time vs. Arrivals Waiting vs. Utilization 0.25 W(sec) 0.2 0.15 0.1 0.05 0 0 0.2 0.4 0.6 r (%) W 1 0.8 1 1.2 Internet 历史(1) Sep69 1st IMP in UCLA, Oct69 2nd IMP in SRI Internet 之父-- L. Kleinrock 1999 1969 History of the Internet (2) History of the Internet (3) Sep69 1st IMP in UCLA Oct69 2nd IMP in SRI 22:30 29Oct69 LOGIN from UCLA to SRI CLA We sent an “L” - did you get the “L”? YEP! We sent a “O” - did you get the “O”? YEP! We sent an “G” - did you get the “G”? Crash! Internet 提供的服务 Shared access to computing resources telnet (1970’s) Shared access to data / files FTP, NFS, AFS (1980’s) Communication medium over which people interact email (1980’s), on-line chat / messaging (1990’s) audio, video (1990’s) replacing telephone network? A medium for information dissemination USENET (1980’s) WWW (1990’s) replacing newspaper, magazine? audio, video (1990’s) replacing radio, CD, TV? Internet Physical Infrastructure Classification by Coverage 模型, 协议, 分层 Protocol Architecture Don’t Need All Layers Everywhere Protocol Data Unit - PDUs Network Components (Examples) Links Interfaces Fibers Ethernet card Switches/routers Large router Wireless card Coaxial Cable Telephone switch Growth of the Internet Today: backbones run at 2.4/10/100 Gbps, 500 millions computers in 150 countries Internet 在中国 中科院高能物理所 1993年3月64Kbps 1986.8.25 Email TJU:1995年3月22日 2009年7月 网民 3.4亿 WWW站 306万 CN域名 1296万 国际出口带宽 748 Gbps 连接美国、俄罗斯、法国、英国、德国、 日本、韩国、新加坡等 宽带接入速度远远落后于发达国家 趋势: 网络时代 每一件事务都是数字的: 声音, 视频, 音乐, 画 片 每一件事务都是在线的: 银行, 医疗, 航空, 天 气情况, 公路交通, … 每个人之间都是相互联系的:医生,教师,经济人, 母亲,儿子, 朋友, 敌人 实现家庭 教育, 办公, 购物, 娱乐/网上娱乐 虚拟工作场所 2000年,美国有五千五百万人实现远程工作 网络制造/电子商务 趋势: 网络时代 计算机集成制造系统/先进制造/信息化 CIMS (Computer Integrated Manufacturing) 1973 Dr. Joseph Harrington 目标:市场竞争 - T, Q, C, S 时间T(即开发新产品的时间或成熟产品的上市时间) 、质量Q、成本C和服务S 核心思想 系统的观点 -- 全局优化 企业的各个环节,包括市场分析、产品设计、加工 制造、经营管理及售后服务的全部经营活动,是不 可以分割的整体. 信息的观点 -- 信息集成 企业的运行是信息采集,传递,加工处理的过程. 产品可以看作数据的物质表现. 目标-提高竞争力(CIMS-Internet) 70年代前 降低劳动成本 降低产品成本 降低产品成本 提出CIMS 70年代 提高企业整体效益 80年代 TQCS CIMS推广应用 90年代 新产品开发,信息、知识 CIMS发展 2000年代 核心:服务/用户 范围:全球企业间/供应链 资源:信息、知识(无时空) 网络制造/ 电子商务 网络制造 Internet从单纯的信息工具变成”E-时代” 的关键资源.全球经济一体化成为制造业变革 的最根本的推动力 基于Internet的虚拟制造与虚拟装配 在相互联结的网络上,建立24小时工作的协同 工作组,大大加快了设计进度、及时获得所需 要的零部件,减少库存、降低成本,提高质量 网络制造的本质特性就是产品的制造过程更加 分散化,信息的传递网络化,信息的流动伴随 着各项工作的并发进行而同时发生 电子商务 信息技术和Internet引发的商务过程的变化 利用以Internet为核心的信息技术,进行商务 活动和企业资源管理 CIMS是企业实施电子商务的基础 企业实施电子商务是CIMS发展的主要标志和主 要内容 电子商务产生背景 竞争环境改变 管理重心迁移 核心 产品竞争 服务竞争 范围 单个企业 全球多企业 资源 人、财、物 信息、知识 生产管理 集中内部资源 离散管理 供应/营销链管理 整合外部资源 集约管理 商务模式转化 传统商务 •文秘型管理 •关注后台(企业内部) •关注业务记录(报表) •地区性 •推销产品为中心 •(卖方市场) 电子商务 •自我服务型管理 •关注前端(客户关系) •要求商业智能(分析) •全球化 •客户为中心 •(买方市场) e企业的业务体系结构 客户 市场营销 产品/服务 销售 服务/支持 产品制造 供应商 合作伙伴 网络智能 协同产品商务( CPC) 制造企业 用户 供应商 …… 制造规划方案 制造规划方案 生产管理方案 生产管理方案 销售和输送方案 销售和输送方案 零部件管理方案 零部件管理方案 维护和售后服务方案 维护和售后服务方案 供应商方案 供应商方案 营销方案 营销方案 Internet/Intranet 产品开发方案 产品开发方案 用户在互联网上 参与产品的开发 、设计及修订。 在虚拟市场空间 中,顾客与生产 者及供应商一起 参与产品生命周 期中的每一项技 术及商业环节。 不受地域及时间 的限制,信息可 以快速地流动。 企业的发展趋势 业务过 程重组 IDS Sheer 业务流程 部门之间的障碍 2000年以后 电子商 务工程 IDS Sheer 企业之间的障碍 网络制造--电子商务 网络发展趋势 趋势: 融合 趋势: 泛在(Ubiquitous) 趋势: 信息爆炸 更多的网络业务流量 数据流量 > 话声流量 更快的传输介质/骨干网(Backbone) 更大的带宽(Bandwidth) 宽带无线网飞速增长(WLAN) (Wi-Fi) Everything over IP 趋势: 融合 新闻/广告-媒体-信息提供者 数字媒体产品 有线电视 视频传输 电话 声音传输 计算机 数字媒体存储/处理 信息提供者和信息传输者的结合 电话公司, 有线公司, 娱乐事业, 和计算机公司 的结合 Trend: 趋势: 更快的传输介质 局域网:1 Gbps over 4-pair UTP-5 up to 100 m, 10Gbps being discussed Was 骨干网:光纤DWDM ( Dense Wavelength Division Multiplexing) OC-768 = 40 Gbps over a to 65 km, 1600 Gbps - 10 Tbps Was 1 Mbps (1Base-5) in 1984 100 Mbps (FDDI) in 1993 无线网:54 /500 Mbps(100-2km-50km) wireless networks, 2.5 Gbps to 5km using light Was 1 Mbps (IEEE 802.11) in 1998 Why Optical Networks? DWDM optoelectricl metro network Trend:宽带无线网飞速增长 Trend:宽带无线网(Wi-Fi)飞速增长 Trend: Wireless / Mobile Integration of 3G and WLAN - offer possibility of achieving anywhere, anytime, high speed and low expense Internet access 3G WLAN Wide area Local area Low bit rate (2M when stand still) High bit rate (11M to 54M) Data/Voice service (QoS support) High expense Data service Low expense High mobility Low mobility Future Internet Research and Experimentation Today’s Internet Millions of users Web, email, low-quality audio & video Interconnect personal computers and servers Applications adapt to underlying technology Today’s Internet Doesn’t Provide reliable end-to-end performance Encourage cooperation on new capabilities Allow testing of new technologies Support development of revolutionary applications Internet2 Project Develop and deploy advanced network applications and technologies, accelerating the creation of tomorrow’s Internet. Goals Enable new generation of applications Re-create leading edge R&E network capability Transfer capability to the global production Internet 206 University Members, Jan. 2005 Abilene Connections :: Apr-2000 Abilene Connections: July 2006 Abilene Connections :: Apr-2000 Abilene International Peering 2006 Internet Development Spiral Commercialization Privatization Today’s Internet Research and Development Internet2 Partnerships Packet-Switching vs. Circuit-Switching Most important advantage of packet-switching over circuit switching: ability to exploit statistical multiplexing: Efficient bandwidth usage; ratio between peek and average rate is 3:1 for audio, and 15:1 for data traffic However, packet-switching needs to deal with congestion: More complex routers Harder to provide good network services (e.g., delay and bandwidth guarantees) In practice they are combined: IP over SONET, IP over Frame Relay Virtual-Circuit Packet Switching Hybrid of circuit switching and packet switching Data is transmitted as packets All packets from one packet stream are sent along a pre-established path ( = virtual circuit) Guarantees in-sequence delivery of packets However: Packets from different virtual circuits may be interleaved Example: ATM networks MPLS? Virtual-Circuit Packet Switching Host C Host D Host A Node 1 Node 2 Node 3 Node 5 Host B Node 6 Node 4 Node 7 Host E Virtual Circuit Packet Switching-Example 3. Circuit Disconnect 1.2.Connection Information Establishment Transfer Router E Router C Router A Router D Router B Router F Timing of Virtual-Circuit Packet Switching Host 1 Node 1 Host 2 Node 2 propagation delay between Host 1 and Node 1 VC establishment Packet 1 Packet 2 Packet 1 Data transfer Packet 3 Packet 2 Packet 3 Packet 1 Packet 2 Packet 3 VC termination Asynchronous Transfer Mode: ATM 1990’s/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport of carry voice, video, data meeting timing/QoS requirements of voice, video (versus Internet best-effort model) “next generation” telephony: technical roots in telephone world packet-switching (fixed length packets, called “cells”) using virtual circuits ATM reference model How far along are we? Standardization bodies - ATM Forum, ITU-T We may never see end-to-end ATM (1997) ATM - too complex - too expansive <IP> Backbone: - 1995 vBNS (ATM) - 1998 Abilene (SONET) - 2000 IP over DWDM Internet technology + ATM philosophy but ATM ideas continue to powerfully influence design of next-generation Internet ex: MPLS, admission ctl., resource reservation, …... Best of Both Worlds Multiprotocol label switching (MPLS) MPLS + IP form a middle ground that combines the best of IP and the best of virtual circuit switching technologies ATM and Frame Relay cannot easily come to the middle so IP has! Label Encapsulation MPLS Encapsulation is specified over various media types. Top labels may use existing format, lower label(s) use a new “shim” label format. Label Substitution Have a friend go to B ahead of you using one of the previous two techniques. At every road they reserve a lane just for you. At every intersection they post a big sign that says for a given lane which way to turn and what new lane to take. We are at an Impasse ISPs are unlikely candidates for architectural change We can’t test new architectures - Despite sizable investments in testbeds We can’t deploy new architectures - And things are getting worse, not better Yet there are pressing requirements for which the current architecture is not well suited GENI (Global Environment for Network Innovations) - NSF 2005 (1) What is GENI? GENI is a facility concept being explored by the US computing community back to an NSF workshop in 2005 focus on architectural research, and provide the experimental infrastructure needed to support that research focus on the research agenda (and infrastructure needs) of the optical, wireless, sensor network, and distributed systems communities GENI (Global Environment for Network Innovations) (2) The goal of GENI Goal: a Future Internet that meets the demands of 21st century to increase the quality and quantity of experimental research outcomes in networking and distributed systems to accelerate the transition of these outcomes into products and services enhance economic competitiveness and secure the Nation's future Ultimately, to lead to a transition of the Internet FIND (Future Internet Network Design) – NSF 2006 FIND asks two broad questions: What are the requirements for the global network in 15 years How would we re-conceive tomorrow's global network today, if we could design it from scratch? FIND program solicits "clean slate process" research proposals in the broad area of network architecture, principles, and design FIRE (Future Internet Research and Experimentation) – European 2007 FIRE is an experimentally-driven long-term research initiative on Future Internet concepts, protocols and architectures encompassing technological, industrial and socio-economic aspects acting as proof-of-concept of the newly proposed technologies and services FIRE RESEARCH Long term multidisciplinary research on future internet paradigms Open to fresh bottom-up ideas with no backwardscompatibility constraints Building on the FET SAC initiative “Situated and Autonomic Communications” Considering at the same time technological, economic and social/policy aspects Build in from the outset and on all levels the right balance between security / accountability and privacy