* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Circuit Switching, Packet Switching, The Network Layer
IEEE 802.1aq wikipedia , lookup
Multiprotocol Label Switching wikipedia , lookup
Distributed firewall wikipedia , lookup
Deep packet inspection wikipedia , lookup
Piggybacking (Internet access) wikipedia , lookup
Asynchronous Transfer Mode wikipedia , lookup
Wake-on-LAN wikipedia , lookup
Zero-configuration networking wikipedia , lookup
Computer network wikipedia , lookup
Internet protocol suite wikipedia , lookup
List of wireless community networks by region wikipedia , lookup
Network tap wikipedia , lookup
Packet switching wikipedia , lookup
Cracking of wireless networks wikipedia , lookup
Airborne Networking wikipedia , lookup
Recursive InterNetwork Architecture (RINA) wikipedia , lookup
Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005 Network Layer 4-1 Switching Networks Long distance transmission is typically done over a network of switched nodes Nodes not concerned with content of data End devices are stations Computer, terminal, phone, etc. A collection of nodes and connections is a communications network Data routed by being switched from node to node Network Layer 4-2 Technology Two different switching technologies Circuit switching Packet switching Network Layer 4-3 Simple Switched Network Network Layer 4-4 Circuit Switching Dedicated communication path between two stations (during conversation) Three phases Establish Transfer Disconnect Must have switching capacity and channel capacity to establish connection Must have intelligence to work out routing Network Layer 4-5 Circuit Switching - Issues Circuit switching is inefficient (designed for voice) Resources dedicated to a particular call Much of the time a data connection is idle Data rate is fixed • Both ends must operate at the same rate Set up (connection) takes time Once connected, transfer is transparent Network Layer 4-6 Packet Switching Network Layer 4-7 Basic Operation Data transmitted in small packets Typically 1000 octets Longer messages split into series of packets Each packet contains a portion of user data plus some control info Control info Routing (addressing) info Packets are received, stored briefly (buffered) and passed on to the next node Store and forward Network Layer 4-8 Use of Packets Network Layer 4-9 Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on rcving side, delivers segments to transport layer network layer protocols in every host, router Router examines header fields in all IP datagrams passing through it application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Network Layer 4-10 Key Network-Layer Functions forwarding: move packets from router’s input to appropriate router output routing: determine route taken by packets from source to dest. analogy: routing: process of planning trip from source to dest forwarding: process of getting through single interchange Routing algorithms Network Layer 4-11 Interplay between routing and forwarding routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 2 2 1 value in arriving packet’s header 0111 1 3 2 Network Layer 4-12 Connection setup 3rd important function in some network architectures: ATM, frame relay, X.25 Before datagrams flow, two hosts and intervening routers establish virtual connection Routers get involved Network and transport layer cnctn service: Network: between two hosts Transport: between two processes Network Layer 4-13 Network service model Q: What service model for “channel” transporting datagrams from sender to rcvr? Example services for individual datagrams: guaranteed delivery Guaranteed delivery with less than 40 msec delay Example services for a flow of datagrams: In-order datagram delivery Guaranteed minimum bandwidth to flow Restrictions on changes in interpacket spacing Network Layer 4-14 Network layer service models: Network Architecture Internet Service Model Guarantees ? Congestion Bandwidth Loss Order Timing feedback best effort none ATM CBR ATM VBR ATM ABR ATM UBR constant rate guaranteed rate guaranteed minimum none no no no yes yes yes yes yes yes no yes no no (inferred via loss) no congestion no congestion yes no yes no no Network Layer 4-15 Virtual circuit vs. datagram networks Network Layer 4-16 Network layer connection and connection-less service Datagram network provides network-layer connectionless service VC network provides network-layer connection service Analogous to the transport-layer services, but: Service: host-to-host No choice: network provides one or the other Implementation: in the core Network Layer 4-17 Virtual circuits “source-to-dest path behaves much like telephone circuit” performance-wise network actions along source-to-dest path call setup, teardown for each call before data can flow each packet carries VC identifier (not destination host address) every router on source-dest path maintains “state” for each passing connection link, router resources (bandwidth, buffers) may be allocated to VC Network Layer 4-18 VC implementation A VC consists of: 1. 2. 3. Path from source to destination VC numbers, one number for each link along path Entries in forwarding tables in routers along path Packet belonging to VC carries a VC number. VC number must be changed on each link. New VC number comes from forwarding table Network Layer 4-19 Forwarding table VC number 22 12 1 Forwarding table in northwest router: Incoming interface 1 2 3 1 … 2 32 3 interface number Incoming VC # 12 63 7 97 … Outgoing interface 2 1 2 3 … Outgoing VC # 22 18 17 87 … Routers maintain connection state information! Network Layer 4-20 Virtual circuits: signaling protocols used to setup, maintain teardown VC used in ATM, frame-relay, X.25 not used in today’s Internet application transport 5. Data flow begins network 4. Call connected data link 1. Initiate call physical 6. Receive data application 3. Accept call 2. incoming call transport network data link physical Network Layer 4-21 Datagram networks no call setup at network layer routers: no state about end-to-end connections no network-level concept of “connection” packets forwarded using destination host address packets between same source-dest pair may take different paths application transport network data link 1. Send data physical application transport network 2. Receive data data link physical Network Layer 4-22 Forwarding table Destination Address Range 4 billion possible entries Link Interface 11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111 0 11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111 1 11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111 2 otherwise 3 Network Layer 4-23 Longest prefix matching Prefix Match 11001000 00010111 00010 11001000 00010111 00011000 11001000 00010111 00011 otherwise Link Interface 0 1 2 3 Examples DA: 11001000 00010111 00010110 10100001 Which interface? DA: 11001000 00010111 00011000 10101010 Which interface? Network Layer 4-24 Datagram or VC network: why? Internet data exchange among ATM evolved from telephony computers human conversation: “elastic” service, no strict strict timing, reliability timing req. requirements “smart” end systems need for guaranteed (computers) service can adapt, perform “dumb” end systems control, error recovery telephones simple inside network, complexity inside complexity at “edge” network many link types different characteristics uniform service difficult Network Layer 4-25 IP: Internet Protocol Network Layer 4-26 The Internet Network layer Host, router network layer functions: Transport layer: TCP, UDP Network layer IP protocol •addressing conventions •datagram format •packet handling conventions Routing protocols •path selection •RIP, OSPF, BGP forwarding table ICMP protocol •error reporting •router “signaling” Link layer physical layer Network Layer 4-27 IP Addressing: introduction IP address: 32-bit identifier for host, router interface interface: connection between host/router and physical link router’s typically have multiple interfaces host may have multiple interfaces IP addresses associated with each interface 223.1.1.1 223.1.2.1 223.1.1.2 223.1.1.4 223.1.1.3 223.1.2.9 223.1.3.27 223.1.2.2 223.1.3.2 223.1.3.1 223.1.1.1 = 11011111 00000001 00000001 00000001 223 1 1 1 Network Layer 4-28 Subnets IP address: subnet part (high order bits) host part (low order bits) What’s a subnet ? device interfaces with same subnet part of IP address can physically reach each other without intervening router 223.1.1.1 223.1.2.1 223.1.1.2 223.1.1.4 223.1.1.3 223.1.2.9 223.1.3.27 223.1.2.2 LAN 223.1.3.1 223.1.3.2 network consisting of 3 subnets Network Layer 4-29 Subnets Recipe To determine the subnets, detach each interface from its host or router, creating islands of isolated networks. Each isolated network is called a subnet. 223.1.1.0/24 223.1.2.0/24 223.1.3.0/24 Subnet mask: /24 Network Layer 4-30 Subnets 223.1.1.2 How many? 223.1.1.1 223.1.1.4 223.1.1.3 223.1.9.2 223.1.7.0 223.1.9.1 223.1.7.1 223.1.8.1 223.1.8.0 223.1.2.6 223.1.2.1 223.1.3.27 223.1.2.2 223.1.3.1 223.1.3.2 Network Layer 4-31 IP addressing: CIDR CIDR: Classless InterDomain Routing subnet portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in subnet portion of address subnet part host part 11001000 00010111 00010000 00000000 200.23.16.0/23 Network Layer 4-32 IP datagram format IP protocol version number header length (bytes) “type” of data max number remaining hops (decremented at each router) upper layer protocol to deliver payload to how much overhead with TCP? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer overhead 32 bits head. type of length ver len service fragment 16-bit identifier flgs offset upper time to Internet layer live checksum total datagram length (bytes) for fragmentation/ reassembly 32 bit source IP address 32 bit destination IP address Options (if any) data (variable length, typically a TCP or UDP segment) E.g. timestamp, record route taken, specify list of routers to visit. Network Layer 4-33 IP Fragmentation & Reassembly network links have MTU (max.transfer size) - largest possible link-level frame. different link types, different MTUs large IP datagram divided (“fragmented”) within net one datagram becomes several datagrams “reassembled” only at final destination IP header bits used to identify, order related fragments fragmentation: in: one large datagram out: 3 smaller datagrams reassembly Network Layer 4-34 IP Fragmentation and Reassembly Example 4000 byte datagram MTU = 1500 bytes 1480 bytes in data field offset = 1480/8 length ID fragflag offset =4000 =x =0 =0 One large datagram becomes several smaller datagrams length ID fragflag offset =1500 =x =1 =0 length ID fragflag offset =1500 =x =1 =185 length ID fragflag offset =1040 =x =0 =370 Network Layer 4-35 NAT: Network Address Translation rest of Internet local network (e.g., home network) 10.0.0/24 10.0.0.4 10.0.0.1 10.0.0.2 138.76.29.7 10.0.0.3 All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers Datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual) Network Layer 4-36 NAT: Network Address Translation Motivation: local network uses just one IP address as far as outside word is concerned: no need to be allocated range of addresses from ISP: - just one IP address is used for all devices can change addresses of devices in local network without notifying outside world can change ISP without changing addresses of devices in local network devices inside local net not explicitly addressable, visible by outside world (a security plus). Network Layer 4-37 NAT: Network Address Translation Implementation: NAT router must: outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr. remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table Network Layer 4-38 NAT: Network Address Translation 2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table 2 NAT translation table WAN side addr LAN side addr 1: host 10.0.0.1 sends datagram to 128.119.40, 80 138.76.29.7, 5001 10.0.0.1, 3345 …… …… S: 10.0.0.1, 3345 D: 128.119.40.186, 80 S: 138.76.29.7, 5001 D: 128.119.40.186, 80 138.76.29.7 S: 128.119.40.186, 80 D: 138.76.29.7, 5001 3: Reply arrives dest. address: 138.76.29.7, 5001 3 1 10.0.0.4 S: 128.119.40.186, 80 D: 10.0.0.1, 3345 10.0.0.1 10.0.0.2 4 10.0.0.3 4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345 Network Layer 4-39 NAT: Network Address Translation 16-bit port-number field: 60,000 simultaneous connections with a single LAN-side address! NAT is controversial: routers should only process up to layer 3 violates end-to-end argument • NAT possibility must be taken into account by app designers, eg, P2P applications address IPv6 shortage should instead be solved by Network Layer 4-40