Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Arterial Blood Gas INTERPRETATION Manuel Antonio Ko, MD Section of Pulmonary Medicine Department of Internal Medicine Makati Medical Center Objectives Learn how to systematically interpret Arterial Blood Gas results Identify the different causes of abnormalities in the ABG results Problem solving exercises Indications for Arterial Blood Gas Determination • Evaluate Ventilatory, Oxygenation, Acid Base and Oxygen carrying capacity of blood • Monitor severity and disease progression • Quantify patient’s response to therapeutic intervention and or diagnostic evaluation Respircare, 1992, 317 Steps in ABG Interpretation 1. Determine Acid Base Status (Acidotic or Alkalotic – pH Levels) 2. Identify the cause of the Acid Base Imbalance (Respiratory or Metabolic) 3. Determine compensation 4. Identify the Presence of Hypoxemia Correction of Hypoxemia 5. Report Interpretation ABG Normal Values Parameters Normal Values (Range) pH 7.35 - 7.45 pO2 80 - 100 mmHg pCO2 35 - 45 HCO3- 22 - 26 mmol/l Base excess -2 to +2 mmol/l O2 Saturation 95 to 100 % Fio2 as indicated *a/A 0.8 mmHg * Not available in some ABG Machines Neutral pH H+ / H2CO3 HCO3 CO2 Acidosis 7.35 7.4 Normal Range Normal or Compensated? 7.45 Alkalosis ABG Normal Values Parameters Normal Values (Range) pH 7.35 - 7.45 pO2 80 - 100 mmHg pCO2 35 - 45 mmHg HCO3- 22 - 26 mmol/l Base excess -2 to +2 mmol/l Base Excess – quick eye view of the adequacy of the buffer mechanism. If there is more than enough HCO3 to balance the pH (compensation) Neutral pH H+ / H2CO3 HCO3 CO2 7.35 7.4 7.45 Normal Range Uncompensated or Partly Compensated Acidosis Compensated Uncompensated or Partly Compensated Alkalosis Increase PCO2 Decrease PCO2 &/or &/or Decrease HCO3 Increase HCO3 Compensation – Acute Respiratory Acidosis • • PaCO2 increase by 10 mmHg decreases pH 0.08 Bicarbonate increases 1 meq/L per 10 mmHg PaCO2 rise – Chronic Respiratory Acidosis • • PaCO2 increase by 10 mmHg decreases pH 0.03 Bicarbonate increases 4 meq/L per 10 mmHg PaCO2 rise Acute Respiratory Acidosis Causes: 1. Central Nervous System Depression Sedative Medications (e.g. Benzodiazepines) Cerebrovascular Accident Head Trauma 2. Neuromuscular Disease Myasthenia Gravis Guillain-Barre Polio Muscular Dystrophy Hypokalemia 3. Impaired lung motion Pleural Effusion Pneumothorax Crush injury Acute Respiratory Acidosis Causes: 4. Acute airway obstruction Foreign Body Aspiration Tumor Laryngospasm (e.g. Croup, Epiglottitis) Bronchospasm (e.g. Asthma, COPD) 5. Acute Respiratory Disease Severe Pneumonia Pulmonary edema Chronic Respiratory Acidosis Causes: Chronic Obstructive Pulmonary Disease Pickwickian Syndrome Chronic Neuromuscular Disease Thoracic cage limitation • Kyphoscoliosis • Scleroderma Compensation – Acute Respiratory Alkalosis • • PaCO2 decreases by 10 mmHg increases pH by 0.08 Bicarbonate decreases 2 meq/L per 10 mmHg PaCO2 fall – Chronic Respiratory Alkalosis • • PaCO2 decrease by 10 mmHg increases pH by 0.03 Bicarbonate decreases 4 meq/L per 10 mmHg PaCO2 fall Respiratory Alkalosis Causes: 1. Increased Central Respiratory Drive: Anxiety CNS Infection Cerebrovascular Accident Brain tumor Head Trauma Medications (Salicylates, Nicotine, Aminophylline, Progesterone, Cathecolamines) Fever Sepsis (especially with Gram Negative Bacteria) Pregnancy Liver failure, Cirrhosis or Hepatic Encephalopathy Hyperthyroidism Respiratory Alkalosis Causes: 2. Increased Chemoreceptor Stimulation Anemia Carbon Monoxide Poisoning Pulmonary edema Pneumonia Pulmonary Embolism High altitude (decreased FIO2) Restrictive lung disease (early) 3. Iatrogenic with Mechanical Ventilation Compensation Metabolic Acidosis – PaCO2 decreased PaCO2 drops 1.2 mmHg per 1 meq/L bicarbonate fall Calculated PaCO2 = 1.5 x HCO3 + 8 (+/2) Measured PaCO2 discrepancy: respiratory disorder Useful in High Anion Gap Metabolic Acidosis Metabolic Acidosis Elevated Anion Gap Acidosis • Anion Gap Definition – Difference between calculated serum anions and cations • Calculation – • AG = Serum Na – (Serum Cl + Serum HCO3) Interpretation – Normal Anion Gap: 12 +/- 2 meq/L Metabolic Acidosis Elevated Anion Gap Acidosis (Mnemonic: "MUD PILERS") causes: Methanol Intoxication Uremia Diabetic Ketoacidosis (DKA) or starvation ketosis Paraldehyde, Phenformin Isopropyl Alcohol, Isoniazid Lactic Acidosis Ethylene Glycol, ethyl alcohol Rhabdomyolysis Salicylates Other Causes: Hyperalbuminemia, administered anions Normal Anion Gap (Hyperchloremic Acidosis) A.) Hypokalemia with Metabolic acidosis: 1. Diarrhea/ Vomiting 2. Ureteral diversion – Uretero-sigmoidostomy – Ileal bladder – Ileal ureter 3. Renal Tubular Acidosis (proximal or distal) * 4. Mineralocorticoid Deficiency – Angiotensin Deficiency: Liver Failure – ACE Inhibitor – Renin Deficiency » Aging » Extracellular fluid volume expansion » Lead » Beta Blockers » Prostaglandin Inhibitor » Methyldopa 5. Carbonic Anhydrase Inhibitor – Acetazolamide – Mefenamic acid 6. Post-hypocapnia Metabolic Acidosis Normal Anion Gap (Hyperchloremic Acidosis) B.) (Hyperkalemic or normal Potassium) Metabolic Acidosis 1. Renal Failure (Early)* 2. Renal Disease* – SLE Interstitial Nephritis – Amyloidosis – Hydronephrosis – Sickle Cell Nephropathy 3. Acidifying agents – Ammonium Chloride – Calcium Chloride – Arginine 4. Sulfur toxicity Compensation Metabolic Alkalosis Serum HCO3 increased » PaCO2 increased » PaCO2 rises 6 mmHg per 10 meq/L bicarbonate rise » Expected PaCO2 = 0.7 x HCO3 + 20 (+/- 1.5) – discrepancy = Respiratory component » Excess Anion Gap >30 mEq/L Metabolic Alkalosis Causes: A. Low Urine Chloride <10 meq/L 1.Gastrointestinal causes • • • • Vomiting Nasogastric suction Chloride-wasting Diarrhea Villous adenoma of colon 2. Renal Causes • • Diuretic use (Urine Chloride <20 meq/L) Poorly reabsorbable anion – – – – • Carbenicillin Penicillin Sulfate Phsophate Post-Hypercapnia Metabolic Alkalosis Causes: A. Low Urine Chloride <10 meq/L 3.Exogenous alkali • Sodium Bicarbonate (baking soda) • Sodium Citrate • Lactate • Gluconate • Acetate • Transfusion • Antacid 4. Cystic Fibrosis 5. Achlorhydria 6. Contraction alkalosis Metabolic Alkalosis Causes: B. Normal or High Urine Chloride >20 meq/L 1. Hypertensive Patient a. Adrenal Disease – – – Primary Hyperaldosteronism Cushing's Syndrome (Pituitary, Adrenal or ectopic) Liddle Syndrome b. Exogenous steroids – – – – – – Excess mineralocorticoid intake Excess glucocorticoid intake Excessive licorice intake Carbenoxalone Glycyrrhizic acid Chewing Tobacco 2. Normotensive Patient 1. Bartter Syndrome or Gitelman Syndrome 2. Hypokalemia 3. Excessive alkali administration 4. Milk-Alkali Syndrome 5. Refeeding alkalosis Neutral pH H+ / H2CO3 HCO3 CO2 7.35 7.4 7.45 Normal Range Uncompensated or Partly Compensated Acidosis Compensated Uncompensated or Partly Compensated Alkalosis Increase PCO2 Decrease PCO2 &/or &/or Decrease HCO3 Increase HCO3 pH PaCO2 HCO3 Uncompensated < 7.35 > 45 Normal Range Partly Compensated < 7.35 > 45 > 26 Normal Range > 45 > 26 Uncompensated > 7.45 < 35 Normal Range Partly Compensated > 7.45 < 35 < 22 Normal Range < 35 < 22 Uncompensated < 7.35 Normal Range < 22 Partly Compensated < 7.35 < 35 < 22 Normal Range < 35 < 22 Uncompensated > 7.45 Normal Range > 26 Partly Compensated > 7.45 > 45 > 26 Normal Range > 45 > 26 Respiratory Acidosis Compensated Respiratory Alkalosis Compensated Metabolic Acidosis Compensated Metabolic Alkalosis Compensated * Uncompensated = acute pH PaCO2 HCO3 Combined Acidosis <7.35 > 45 < 22 Combined Alkalosis >7.45 < 35 > 26 Oxygenation Status in ABG Report 1. 2. 3. Adequate Oxygenation at Given FiO2 - Pa02 = 80 to 100 mmHg Hypoxemia at a Given FiO2 - PaO2 < 80 mmHg More Than Adequate Oxygenation at a Given FiO2 - PaO2 > 100 mm Hg Respiratory Components in ABG • PaO2 – Partial Pressure of Arterial Oxygen - NV: 80-100mmHG • PCO2 – Partial Pressure of Carbon Dioxide - NV: 35-45 mmHg • SaO2 – Oxygen Saturation in the Blood SaO2 The oxygen-hemoglobin dissociation curve plots the proportion of hemoglobin in its saturated form on the vertical axis against the prevailing oxygen tension on the horizontal axis. It is usually a sigmoid plot. Hemoglobin molecules can bind up to four oxygen molecules in a reversible way. Many factors influence the affinity of this binding and alter the shape of the curve including: 1.) pH 2.) the concentration of 2,3Diphosphoglycerate (2,3-DPG) 3.) the type of hemoglobin molecules (adult vs fetal types) 4.) the presence of poisons especially carbon monoxide Hypoxemia in ABG • Inadequate oxygenation • Pa02 < 80 at a given level of FiO2 - FiO2 (Fraction of Inspired O2) - 21% at room air ( proportion of O2 in the atmosphere ) Respiratory Failure A. Type 1 – Hypoxemia without CO2 retention (Normal PCO2) ex.: Pulmonary Edema, Pneumonia B. Type 2 – There is CO2 retention (Increased PCO2) ex.: Hypoventilation (reduced alveolar ventilation) pump failure, airway obstruction, neuromuscular weakness C. Combined Determination of Hypoxemia (Parameters) 1. Partial Pressure of Alveolar Oxygen PAO2 2. Partial Pressure Difference between Alveolar and Arterial O2 A-aDO2 3. a/A Ratio (NV: 0.8) a/A ratio A-aO2 Alveolar-Arterial Oxygen Tension Difference (PAO2 – PaO2) PaO2 is generally lower than PAO2 - Physiologic shunt ( unoxygenated blood coming from the coronary arteries draining into the Thebesian Veins and parts of the Bronchial Arteries both draining directly into the Pulmonary Veins and bypassing the gas exchange mechanism of the lungs + diffusion of O2 to the alveolar capillaries) Widens when there is pulmonary shunting (Pneumonia, edema & etc.). Also widens when on supplemental oxygen ( more accurate when calculated at room air) Minimal or no widening if the problem is pure hypoventilation NORMAL PAO2 = 100 mmHg Alveolar PO2 (PAO2) Arterial PO2 (PaO2) Capillary PO2 O2 Diffusion through the Capillaries + Physiologic Shunt A-aDO2 PaO2 = 80-90mmHg (lower) HYPOXEMIA Type 1 Resp. Failure PAO2 = 100 mmHg Alveolar PO2 (PAO2) Disease Arterial PO2 (PaO2) Capillary PO2 O2 Diffusion through the Capillaries + Physiologic Shunt + hypoxia Widened A-aDO2 PaO2 = 50 mmHg (much lower) HYPOXEMIA PAO2 = inc. 300 mmHg Supplemental O2 Alveolar PO2 (PAO2) Disease Capillary PO2 Arterial PO2 (PaO2) O2 Diffusion through the Capillaries + Physiologic Shunt + hypoxia PaO2 = inc. 75 mmHg Widened A-aDO2 ( but slightly lower than normal) HYPOVENTILATION PAO2 already Decreased Type 2 hypoxemia PAO2 = 60mm.Hg Hypoventilation Alveolar PO2 Capillary PaO2 PaO2 = 50 mm Hg – No significant widening of the AaDO2 Arterial PO2 (PaO2) HYPERCARBIA Airway Obstruction PACO2 = Decreased Hypoventilation Alveolar PCO2 (PACO2) Capillary PCO2 Increase PCO2 Arterial or Mixed Venous PCO2 (PaCO2/ PVCO2) Determination of Hypoxemia 1. Partial Pressure of Alveolar Oxygen PAO2 = PiO2 – PCO2/0.8 (PiO2 = 713 X FiO2) 2. Partial Pressure Difference between Alveolar and Arterial O2 A-aD02 = PAO2 – PaO2 3. a/A Ratio (NV: 0.8) a/A = PaO2/PAO2 O2 Correction Desired FiO2 = Des. PaO2 / (a/A) + PCO2 / 0.8 ________________________ 713 1. Desired PaO2 – 80 to 100 mmhg 2. (713) – Atmospheric pressure – water vapor pressure [ constant ] 3. PCO2 – Partial Pressure Carbon Dioxide 4. (0.8) – Respiratory Quotient ( volume of CO2 produced/ volume of O2 consumed ) [ constant ] 5. a/A – PaO2 (Arterial O2) / PAO2 (Alveolar O2) P/F Ratio PaO2/ Fio2 (simple estimate) • Indicates range of hypoxemia • P/F ratio > or equal 400 - Normal • P/F ratio < 400 - Hypoxemia Giving O2 Supplement • Supplemental O2 conversion - LPM Oxygen = LPM x 4 + 20 ( Fi02) ex: 2 (LPM O2) x 4 + 20 = 28% FiO2 (using O2 cannula, O2 mask) (O2 supplementation is not provided by direct FiO2) Conditions invalidating or modifying ABG Results A. Large Air bubbles not expelled from sample: PaO2 rises 0-30 mmHg PaCO2 may fall slightly B. Fever or Hypothermia: Patient temperature shifts oxy-hemoglobin curve C. Hyperventilation or breath holding (due to anxiety): Conditions invalidating or modifying ABG Results D. Delayed analysis: 1. Iced Sample maintains values for 1-2 hours 2. Un-iced sample quickly becomes invalid PaCO2 rises 3-10 mmHg/hour PaO2 falls at a rate related to initial value pH falls modestly E. Excessive Heparin: 1. Dilutional effect on results 2. Decreases bicarbonate and PaCO2 Case 1 • 65 year old male, seen at the ER, diagnosed case of Chronic Renal Failure presently undergoing Hemodialysis. He was placed on Multivent Mask at 40% FiO2. Chest X-ray shows Increase Broncho-vascular markings with concomitant interstitial and alveolar infiltrates on the Right Lower Lobe PPE: • T= 37.8, RR: 26, BP: 90/60, CR: 115 • Pale skin and Diaphoretic • Use of accessory muscle and abdominal breathing pattern observed • fine crackles on the right lower lung fields with expiratory wheezes all over • bipedal edema noted ABG and Labs Values 1. Interpret Acid Base Status? pH 7.29 PCO2 50 mmHg 2. Determine if Hypoxemia Exists ? PaO2 59 mmHg HCO3 17 mmol/L BE -3.5 FiO2 40% SaO2 79% 3. Compute the a-AO2 gradient ? 4. Compute for the desired FiO2 ? 5. Compute Anion Gap ? 6. Initial Diagnosis? K 5.0 Na 132 Cl 95 7. What are your immediate plans for the patient ? pH PaCO2 HCO3 Combined Acidosis <7.35 > 45 < 22 Combined Alkalosis >7.45 < 35 > 26 Acute Respiratory Acidosis Causes: 4. Acute airway obstruction Foreign Body Aspiration Tumor Laryngospasm (e.g. Croup, Epiglottitis) Bronchospasm (e.g. Asthma, COPD) 5. Acute Respiratory Disease Severe Pneumonia Pulmonary Edema Metabolic Acidosis Elevated Anion Gap Acidosis • Anion Gap Definition – Difference between calculated serum anions and cations • Calculation – • AG = Serum Na – (Serum Cl + Serum HCO3) Interpretation – Normal Anion Gap: 12 +/- 2 meq/L Metabolic Acidosis Elevated Anion Gap Acidosis (Mnemonic: "MUD PILERS") causes: Methanol Intoxication Uremia Diabetic Ketoacidosis (DKA) or starvation ketosis Paraldehyde, Phenformin Isopropyl Alcohol, Isoniazid Lactic Acidosis Ethylene Glycol, ethyl alcohol Rhabdomyolysis Salicylates Other Causes: Hyperalbuminemia, administered anions Interpretation • Combined Respiratory and metabolic Acidosis • Inadequate Oxygenation at 40% FiO2 Case 2 • 25 year old female, seen at the ER, diagnosed case of Asthma, who complained of difficulty of breathing 2 days ago but apparently she is feeling much better now after inhaling bronchodilators. Past Medical History is unremarkable except for Asthma. She went to the ER because of persistent coughing. Chest X-ray is normal PPE: • T= 36.8, RR: 14, BP:110/70, CR: 70 • Her breath sounds are clear • She refuses to receive supplemental oxygen • Someone, for some reason, ordered an ABG and the results showed ABG and Labs Values 1. Is this compatible with the patient’s condition? pH 7.34 PCO2 46 mmHg 2. Interpret? PaO2 50 mmHg HCO3 27 mmol/L 3. How do you confirm the error ? BE +0.5 FiO2 21% room air SaO2 80% K 3.9 Na 137 Cl 97 Problem • Compensated Respiratory Acidosis with hypoxemia at room air (21% FiO2) • Determine O2 sat by Pulse Oximeter • SaO2 = SpO2 +/- 4% (difference) • Probably Mixed Venous Blood Sample obtained PROBLEM ABG and Labs Values pH 7.37 PCO2 49 mmHg PaO2 90 mmHg HCO3 26 mmol/L BE +0.5 FiO2 21% room air SaO2 97% 1. Interpret? ABG and Labs Values 1. Normal ? pH 7.37 PCO2 49 mmHg 2. Compensated Respiratory Alkalosis PaO2 90 mmHg HCO3 25 mmol/L BE +0.5 FiO2 21% room air SaO2 97% 3. Consider PCO2 levels instead ?(directly measured over HCO3 which is only estimated by machine calculation) 4. Have sample repeated (Consider Error) ? THANK YOU for your attention