Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
4. Convergence of random variables Convergence in probability Convergence in distribution Convergence in quadratic mean Properties The law of large numbers The central limit theorem Delta method 1 Convergence in probability Xn X P 0 P X n X 0 CONVERGENCE OF RANDOM VARIABLES 2 Convergence in distribution Xn X FX n ( x) FX ( x) d at any continuity point of FX CONVERGENCE OF RANDOM VARIABLES 3 Convergence in quadratic mean X n X qm E( X n X ) 0 2 CONVERGENCE OF RANDOM VARIABLES 4 Properties qm P d X X X X X X (i) n n n d P c Xn c (ii) X n { X n : n }, {Yn : n }; X , Y . Then: (i) P P P X n X , Yn Y X n Yn X Y qm qm qm (ii) X n X , Yn Y X n Yn X Y d d d (iii) X n X , Yn c X n Yn X c CONVERGENCE OF RANDOM VARIABLES 5 Properties (iv) (v) P P P X n X , Yn Y X n Yn XY d d d Xn X , Yn c X n ·Yn c X Let g(•) be a continuous function. Then: (i) P P X n X g ( X n ) g(X ) d d X X g ( X ) g( X ) (ii) n n CONVERGENCE OF RANDOM VARIABLES 6 The law of large numbers X with EX ; X 1 ,..., X n ,... i. i. d. sample. Let X n 1n X i . Then: X n P CONVERGENCE OF RANDOM VARIABLES 7 The central limit theorem X with EX ; VX 2 ; X 1 ,..., X n ,... i. i. d. sample. Let X n n 1 n X i 1 i . Then: Xn n 2 N (0,1) d CONVERGENCE OF RANDOM VARIABLES 8 The central limit theorem Remark: n( X n ) d N (0,1) d n( X n ) N (0, 2 ) ( X n ) N (0, ) d 2 n X n N ( , ) 2 n (good for n 30) CONVERGENCE OF RANDOM VARIABLES 9 Delta method Suppose that CLT holds: n ( X n ) N (0, ) d 2 g(•) differentiable function. Then: d n ( g ( X n ) g ( )) g ' ( ) N (0, 2 ) i. e., g ( X n ) N ( g ( ), g ' ( ) 2 2 n ) CONVERGENCE OF RANDOM VARIABLES 10