Download convergence of random variables

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
4. Convergence of
random variables







Convergence in probability
Convergence in distribution
Convergence in quadratic mean
Properties
The law of large numbers
The central limit theorem
Delta method
1
Convergence in probability
Xn 
 X 
P
   0 P X n  X     0
CONVERGENCE OF RANDOM VARIABLES
2
Convergence in distribution
Xn 
 X  FX n ( x)  FX ( x)
d
at any continuity point of
FX
CONVERGENCE OF RANDOM VARIABLES
3
Convergence in quadratic mean
X n  X 
qm
E( X n  X )  0
2
CONVERGENCE OF RANDOM VARIABLES
4
Properties
qm
P
d
X


X

X


X

X


X
(i)
n
n
n
d
P

c  Xn 

c
(ii) X n 
{ X n : n  }, {Yn : n  }; X , Y . Then:
(i)
P
P
P
X n 
X , Yn 
Y  X n  Yn 
X Y
qm
qm
qm
(ii) X n  X , Yn  Y  X n  Yn  X  Y
d
d
d
(iii) X n 

X , Yn 

c  X n  Yn 

X c
CONVERGENCE OF RANDOM VARIABLES
5
Properties
(iv)
(v)
P
P
P
X n 
 X , Yn 
 Y  X n  Yn 
 XY
d
d
d
Xn 

X , Yn 

c  X n ·Yn 

c X
Let g(•) be a continuous function. Then:
(i)
P
P
X n 
 X  g ( X n ) 
 g(X )
d
d
X


X

g
(
X
)


g( X )
(ii)
n
n
CONVERGENCE OF RANDOM VARIABLES
6
The law of large numbers
X with EX   ; X 1 ,..., X n ,... i. i. d. sample.
Let X n  1n
X
i
. Then:
X n 

P
CONVERGENCE OF RANDOM VARIABLES
7
The central limit theorem
X with EX   ; VX   2 ; X 1 ,..., X n ,... i. i. d.
sample.
Let X n 
n
1
n
X
i 1
i
. Then:
Xn  

n
2

 N (0,1)
d
CONVERGENCE OF RANDOM VARIABLES
8
The central limit theorem
Remark:
n( X n  ) d

 N (0,1)

d
n( X n  ) 

N (0,  2 )
( X n  ) 
 N (0, )
d
2
n
X n  N ( , )
2
n
(good for n 30)
CONVERGENCE OF RANDOM VARIABLES
9
Delta method
Suppose that CLT holds:
n ( X n  ) 
 N (0, )
d
2
g(•) differentiable function. Then:
d
n ( g ( X n )  g ( )) 

g ' ( ) N (0,  2 )
i. e.,
g ( X n )  N ( g (  ), g ' (  )
2 2
n
)
CONVERGENCE OF RANDOM VARIABLES
10
Related documents