Download Statistics, Data Analysis, and Probability

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of statistics wikipedia , lookup

Foundations of statistics wikipedia , lookup

Inductive probability wikipedia , lookup

Probability amplitude wikipedia , lookup

Law of large numbers wikipedia , lookup

Transcript
Statistics, Data
Analysis, and
Probability
PS 1.1- Mean, Median, Mode
Period 3, 5: 1/10/12
Period: 2, 4, 6: 1/11/12
Mode
• Mode is the most frequently
occurring number in a set.
Example:
For the set [3, 2, 8, 2, 4]
The number that appears most
often is 2, so 2 is the mode.
Mode
Big Note: If there’s more than one
number that appears most often,
that’s okay. Some sets will have
multiple modes.
Example:
For the set [3, 2, 8, 2, 4, 3]
The numbers that appear most often
are both 2 and 3, so the modes of
this set are 2 and 3.
continued…Mode
• For the set [3, 2, 8, 4]
Since no numbers appear more
than any other numbers, there
is no mode for this set.
White Board CFU
• The box below shows the number of
kilowatt-hours of electricity used last
month at each of the houses on Harris
street.
620, 570, 570, 590, 560, 640, 590, 590,
580
What is the mode of this data?
Mean
• Mean is often referred to as the
“average” of a set of numbers.
• To find the mean, add up all the values,
and divide the sum by the number of
values in the set.
MEAN= (sum of a group of numbers)
(NUMBER of numbers in the group)
Example
In calculating mean…
• If the values are 15, 45, and
33
• The sum is 15+45+33=93
• The number of numbers in the
set is 3
• So 93÷3=31
Whiteboard CFU
Parisa’s four math test scores were 7, 8,
10, and 6. Hector’s test scores were 6, 7,
9, and 10. Charles’ test scores were 8,
10, 10, and 9.
What is Hector’s mean score?
Whiteboard CFU
• Parisa’s four math test scores
were 7, 8, 10, and 6. Hector’s
test scores were 6, 7, 9, and
10. Charles’ test scores were
8, 10, 10, and 9.
• Who had the highest mean?
Median
• Median is the middle number
in an ordered set.
• You must put the numbers in
order.
• In an even set of numbers, the
median is the mean of the two
middle terms.
Example
• For the set [3, 7, 8, 2, 4]
These numbers aren’t in order,
so place them in order:
2, 3, 4, 7, 8
The middle number is 4, so 4 is
the median.
Whiteboard CFU
• Find the median for the
following set
[3, 7, 8, 2, 4, 6]
ANSWER
• 4 and 6 are both in the middle
• The average of 4 and 6= 5, so
the median of this set is 5.
PS 1.2- Probability
• Probability refers to the likelihood that a
certain event will happen, such as
flipping heads or tails on a coin, or
pulling particular color of marble out of a
bag.
Probability
The probability of an event occurring
is always
the number of DESIRED outcomes
The TOTAL POSSIBLE outcomes
Example
For instance, if you had a bag of 75 marbles with
the 15 yellow, 28 blue, 20 green, and 12 pink,
what is the probability that you will select a yellow
marble?
the number of DESIRED outcomes= 15 = 1
the TOTAL POSSIBLE outcomes
75 5
So the probability of picking a yellow marble would
be 1/5.
Whiteboard CFU
• If five green marbles are removed from
the bag, what is the probability that you
will select a green marble?
• A yellow marble?
BIG NOTE
• Let’s say you flipped a coin ten times, and it
came up heads every single time.
What would be the probability that it came up heads
on the eleventh flip?
**Getting heads ten times in a row may be unlikely,
but it doesn’t affect probability on the eleventh
flip.
WHITE BOARD CFU
• A bucket contains 3 bottles of apple
juice, 2 bottles of orange juice, 6 bottles
of tomato juice, and 8 bottles of water. If
Kira randomly selects a bottle, what is
the probability that she will select a drink
other than water?
ANSWER
• DESIRED outcomes= 11
• TOTAL POSSIBLE outcomes=
19
= 11
19
Independent Practice
Independent Practice PS 1.1
Find mean, median, and mode
1) 18, 18, 15, 18, 18,
2) 94, 69, 84, 69, 90
Independent Practice PS 1.2
Note: 52 cards in deck, 4 suites
• 1) Drawing a 6 from a deck of
cards?
•
2) Drawing a black card from a deck
of cards?
4) 12, 15, 16, 17, 15, 17
•
3) Rolling an odd number on a die?
5) 16, 3, 3, 3, 8, 24
•
4) Drawing a 3 from a deck of
cards?
•
5) Drawing a club from a deck of
cards?
•
6) Rolling an even number on a die?
•
7) Rolling a 6 on a die?
3) 4, 18, 18, 23, 23, 19, 8,
6) 22, 5, 22, 13, 12, 24,
7) 23, 1, 1, 18, 1, 3, 18, 3
8) 23, 10, 2, 6, 10, 14, 1