Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Key Stage 4 The Breathing System © Boardworks Ltd 2003 Teacher’s Notes A slide contains teacher’s notes wherever this icon is displayed - To access these notes go to ‘Notes Page View’ (PowerPoint 97) or ‘Normal View’ (PowerPoint 2000). Notes Page View Normal View Flash Files A flash file has been embedded into the PowerPoint slide wherever this icon is displayed – These files are not editable. © Boardworks Ltd 2003 Humans breathe to ensure that oxygen enters the body and that carbon dioxide leaves the body. Oxygen (O2) Carbon Dioxide (CO2) © Boardworks Ltd 2003 The breathing system Let us now look at the structure of the breathing system. The human body can be divided into three regions. HEAD THORAX ABDOMEN The breathing system is found in the thorax. © Boardworks Ltd 2003 The body separates the process of breathing in and breathing out. Breathing in is one process and is known as… Inhalation (When we breathe in we inhale) Breathing out is another separate process and is known as… Exhalation (When we breathe out we exhale) By separating these two processes, the body can concentrate on the two tasks in turn. © Boardworks Ltd 2003 Firstly it must inhale oxygen and secondly it must exhale carbon dioxide The breathing system is designed to be able to perform both tasks using the same organs. One final important fact to remember is that breathing can be performed without humans having to think about it. Just imagine that as well as everything else you have to think about, you would have to remember to tell your body to inhale, then exhale, then inhale, exhale, inhale, … etc. There would be no time for anything else. © Boardworks Ltd 2003 So, what does this system look like? Well, let us start where air enters the system… Air enters through either the mouth or the nostrils. Nostril Nasal cavity Mouth Oral Cavity It does not matter through which opening the air enters because the oral and nasal cavities are connected. © Boardworks Ltd 2003 As the air passes through the nasal cavity, the air is smelt, warmed, filtered and moistened slightly. The air meets at the Pharynx, a junction at back of the oral cavity. The Pharynx is a junction between two tubes. The air must travel down only one of these tubes. One is the Windpipe (Trachea) and the other is the Gullet (Oesophagus) Trachea Gullet As the name suggests, air must pass down through the windpipe (trachea). © Boardworks Ltd 2003 You can think of the trachea as a tube lined with Cshaped supporting rungs. Diagram of trachea with cartilage rungs. These rings are made of a tough material called Cartilage. They help to hold the tube open. You may be wondering why they are C-shaped and not full circles. © Boardworks Ltd 2003 Well, if a tube were lined with fixed circles of cartilage, it would have a fixed diameter… Cartilage Trachea Although this would stop the tube from collapsing, this would also mean that the tube would not be able to expand. When we breathe in, the trachea must expand to allow more air in. © Boardworks Ltd 2003 Therefore, a C-shaped piece of cartilage can change shape. © Boardworks Ltd 2003 As well as being adapted on its outer surface, the trachea shows adaptations on its inner lining. If we look closely at the inner surface of the trachea… ciliated epithelial cells © Boardworks Ltd 2003 The cells that line the wall of the trachea show two special adaptations. produce a sticky liquid called mucus tiny hairs called Cilia Ciliated epithelial cells We say the cells show specialisation. These specialised cells have a particular job to do. © Boardworks Ltd 2003 The presence of mucus and cilia on the lining of the trachea ensures that the air we breathe is clean and free from disease. Microbes travelling down the trachea within inhaled air. Microbes become stuck within the mucus. Ciliated Cells Mucus being made by the ciliated cells. © Boardworks Ltd 2003 Once the microbes are stuck in the mucus, the cilia move the mucus upwards using a wafting action. The mucus passes up to the top of the trachea where it can either be swallowed or coughed out of the body. Coughed Swallowed © Boardworks Ltd 2003 Eventually the trachea branches, dividing into two smaller tubes called the left and right Bronchi. (The singular of bronchi is a bronchus) Trachea Right Left Don’t forget that in a picture of the human body, right becomes left and left becomes right. Check by holding up your right hand in a mirror. The person staring back at you will be holding up their right hand. © Boardworks Ltd 2003 Each Bronchus connects the trachea to a large air sac known as a Lung. You have two bronchi and therefore your body has two lungs, a left and a right. Trachea Right Bronchi Right Lung Left Bronchi Left Lung © Boardworks Ltd 2003 In reality, the lungs are different in shape. Here is a more accurate diagram. Right Lung Trachea Cartilage Right Bronchus Pleural Membrane Location of the heart Bronchiole © Boardworks Ltd 2003 With air entering and leaving the lungs, they are going to increase and decrease in size on a regular basis. When organs in the body increase in size, they will touch other organs because of the lack of space. This is a danger because living tissue is very delicate and when tissues rub against each other, friction could be generated. Organ 1 Organ 2 FRICTION This friction could damage the tissue and kill cells. Therefore, a protective bag called the Pleural membrane surrounds the lungs, which are likely to rub against other organs during the breathing process. © Boardworks Ltd 2003 A fluid is found within this bag, surrounding the lungs. This fluid lubricates the lining of the lungs and stops friction being generated. Plural Membrane Lung Fluid © Boardworks Ltd 2003 Each Bronchus now starts branching to produce smaller and smaller tubes. Bronchi These smaller branches are known as bronchioles One bronchus gives rise to many bronchioles. The overall effect is similar to the branching of a tree from a central trunk. This branching of the bronchi occurs within both lungs. © Boardworks Ltd 2003 Oxygen will pass Down the trachea Through each bronchus And through all the bronchioles within each lung Always remember that the CO2 is moving in the opposite direction! BUT WHAT HAPPENS NEXT? © Boardworks Ltd 2003 Oxygen makes its way to special air sacs. Actually, each air sac is found to be a bundle of air sacs. Together, they are known as an Alveolus. The outside of the alveolus is covered with tiny blood vessels. We can look inside the alveolus to get some idea of why they are shaped the way they are. © Boardworks Ltd 2003 Here is a cross section: Oxygen (O2) gas passes through here Lining of the alveolus This O2 is then able to dissolve in a small moist lining © Boardworks Ltd 2003 The O2 gas molecules O2 O2 O2 O2 dissolve dissolve Moist lining This moist lining also stops the alveolus from drying and cracking. It lubricates the insides of the air bag. © Boardworks Ltd 2003 After the oxygen dissolves it also diffuses. O2 O2 O2 O2 DIFFUSION Cell lining of alveolus Cell lining of capillary Blood The Oxygen molecules must diffuse through both the lining of the alveolus and the lining of the blood capillary. They are eventually picked up by red blood cells. © Boardworks Ltd 2003 The blood now carries this oxygen to the cells of the body. Right Lung Left Lung Blood vessel O2 Body cells O2 Blood © Boardworks Ltd 2003 The movement of the oxygen from the blood to the cells also follows the law of diffusion. Blood coming from the lungs It is highly concentrated within the blood High concentration Meanwhile the concentration is low within the cell Low concentration Body cell Therefore the Oxygen passes into the body cells © Boardworks Ltd 2003 Remember that the process of inhalation brings O2 into the body whilst exhalation removes CO2. So, how does our breathing system enable us to do this. Well, inhaling and exhaling are brought about by certain changes in the position of our breathing system. Let us look again at the general structure of this system. Remember, the breathing system is found in the upper region of the body. This is known as the thorax. © Boardworks Ltd 2003 Picture of the respiratory system Trachea Ribs Rib muscles Right Bronchus Diaphragm Right Lung Left Lung This system does not have a fixed shape. It has the ability to move, whilst remaining enclosed within the protection of the ribcage. © Boardworks Ltd 2003 This means that the rib cage must also be able to change position. OBSERVATION Take your hands and place them flat on your chest just above your hips on each side of your body. Now breathe in and out very deeply. Whilst you do this, watch to see what happens to your hands. You should notice the following things….. © Boardworks Ltd 2003 When you breathe in (inhale), your hands move up and outwards. When you breathe out (exhale), your hands move down and inwards. Let’s see why…. Inhaling When we inhale, our lungs fill with air. As they fill, they become enlarged. The ribs must then move upwards and outwards to make more room in the thorax. The overall effect of this is that our chest expands. © Boardworks Ltd 2003 Your diaphragm is also involved in the inhalation process. It’s location beneath the lungs means that it separates the thorax from the abdomen. It is a sheet of muscle that spans the width of the body. Just before we inhale, it is found in a dome shape. As we inhale, it contracts and flattens. The result of this change in shape is a change in the volume of the thorax. Inhaling © Boardworks Ltd 2003 As the volume of the thorax increases, the internal air pressure drops. This means that the air pressure outside the lungs is greater than the air pressure inside the lungs. High Low •Diaphragm flattens •High air pressure outside •Thorax volume increases •Low air pressure inside •Air pressure drops •Air diffuses into the lungs © Boardworks Ltd 2003 If these changes occur when we breathe in, the opposite must happen when we breathe out. These changes can be summarised in the table below... Feature Inhaling Exhaling Diaphragm shape Ribs Flat Domed Up and out Down and in Diaphragm muscle Rib Muscle Contracted Relaxed Contracted Relaxed Lungs Inflated Deflated © Boardworks Ltd 2003 Click on the ‘Air Drawn in’ buttons to explore the animation. © Boardworks Ltd 2003 Click on the ‘Passage of air’ buttons to explore the animation. © Boardworks Ltd 2003 © Boardworks Ltd 2003 “A Load of hot air!” The following activity will help you review your understanding of the structure of the breathing system. Instructions: •There are 20 questions to answer •The number in brackets tells you how many letters in the word. © Boardworks Ltd 2003 “A Load of hot air!” Questions 1 This is the toxic gas that is released when we breathe out? (6, 7) 2 When these contract and relax they move the rib-cage out and in? (3, 7) 3 The name for the minute air sacs that are covered with blood vessels? (7) 4 The area of the body where the lungs are found? (6) 5 A protective structure surrounding the lungs (3, 4) 6 The trachea branches into _________ (7), one going to each lung. 7 The circulatory system will take oxygen to the _______ (5) of the body. 8 Directly beneath the lungs is a sheet of muscle known as the ____________ . (9) © Boardworks Ltd 2003 9 10 11 12 13 14 15 16 The cavity through which we breathe and eat. (5) The human breathing system contains two of these large spongy air bags. (5) The other name for the wind-pipe? (7) The name for the junction between the oesophagus and the wind-pipe? (7) This is one of the dead-end sacs at the end of the bronchioles (8) The left ________ (8) connects the left lung to the trachea. The gas needed by the body to perform respiration? (6) The diaphragm separates the breathing system from the __________.(7) © Boardworks Ltd 2003 17 The area that connects the nose to the pharynx. (5, 6) 18 The main purpose of the breathing system is to generate _________. (6) 19 One of two openings of the breathing system located above the mouth. (7) 20 The name of the release of energy from food? (11) © Boardworks Ltd 2003 Activity “Don’t hold your breath!” Pretending you are air! List down the answers to questions 19, 17, 13, 12, 11, 10 and 6. Now re-order the words to represent a trip through the breathing system, beginning outside the body. You must also try to fit the bonus word ‘bronchioles’ into your list. © Boardworks Ltd 2003 Activity Where’s the air going? Use answers from questions 1, 7, 18, 15 and 20 to fill in the following explanation of the purpose of breathing oxygen into our bodies. When we breathe, we are doing so to fuel the process of ____________ , which is one of the characteristics of life. __________ is taken in and ________ __________ is removed in the process. The oxygen eventually leaves the breathing system and enters the circulatory system. This then transports the gas around the body to all the body ________ which can generate __________. © Boardworks Ltd 2003 Activity Words that mean the same thing. Answer the following questions. Be careful, the spelling is essential! 1. What is the name of one tiny air sac? 2. Many tiny air sacs are known as ________? 3. What is the name of one branch of the trachea? 4. The name for the tubes that branch from the trachea are known as ___________? © Boardworks Ltd 2003 Activity The lungs have to move! When we breathe in, our lungs fill with air. Identify two ways our breathing system creates more room in the thorax for these inflated lungs. © Boardworks Ltd 2003 Wordsearch E D I X O I D N O B R A C N S V T Y S Z F E T B V X R E D M V U E U R M G W Q C Q E L R N X W X N O S T R I L A S L O N W D Y D G E F A H E L P S N K R I B M U S C L E S V I M L P Z A L V E O L I H O E R B A O R P D B I C B U H X O A R E O I H A E D T F T N Y L T O H Q B R O N C H U S J G U I N C P C A G E A O I K I E S O C A P A G C R M R U J L N M N H R R G M H G N A S A L C A V I T Y E P L Y K X N Y R A H P S J T © Boardworks Ltd 2003 Does size matter? © Boardworks Ltd 2003 Which means what? © Boardworks Ltd 2003 In and out but which way around? © Boardworks Ltd 2003 Activity The breathing system is designed to carry out certain functions. If we look at specific features of the system, we should be able to explain why they look the way they do. Read each ‘feature’ (in red) statement and each ‘explanation’ (in blue) statement. Then try to drag the correct feature to the explanation. e.g. small flexible flap, the epiglottis covers the trachea when we swallow to stop the food passing into the lungs © Boardworks Ltd 2003 Match the correct feature to the explanation. © Boardworks Ltd 2003 Match the correct feature to the explanation. © Boardworks Ltd 2003 Multiple choice questions © Boardworks Ltd 2003 1. When we inhale, muscles between the ribs… A relax causing the ribcage to move upwards. B contract causing the ribcage to move downwards. C relax causing the ribcage to move downwards. D contract causing the ribcage to move upwards. © Boardworks Ltd 2003 2. When we inhale the diaphragm muscles: A relax and this causes the diaphragm to return to its domed position. B contract and this causes the diaphragm to return to its domed position. C contract and this causes the diaphragm to flatten. D relax and this causes the diaphragm to flatten. © Boardworks Ltd 2003 3. When inhaling, the movement of the ribcage and diaphragm together combine to cause the volume of the chest cavity to… A increase. B decrease. C return to normal. D stay the same. © Boardworks Ltd 2003 4. The change in volume when inhaling causes the pressure inside the lungs to: A increase. B decrease. C return to normal. D stay the same. © Boardworks Ltd 2003 5. We inhale when… A the pressure in the lungs is lower than the air pressure outside the body. B the pressures are equal. C the pressures in the lungs is higher than the air pressure outside the body. D when the pressure inside the lungs is greater than that inside the blood. © Boardworks Ltd 2003 6. Which of the following adaptations make the exchange of gases across the lung surface effective… A few, large alveoli with a massive surface area, a dry inner surface and close proximity to an extensive capillary network. B many, large alveoli with a massive surface area, a moist inner surface and close proximity to an extensive capillary network. C many, tiny alveoli with a massive surface area, a moist inner surface and close proximity to an extensive capillary network. D few, tiny alveoli with a small surface area, a dry inner surface and close proximity to an extensive capillary network. © Boardworks Ltd 2003