Download IOSR Journal of Applied Physics (IOSR-JAP) ISSN: 2278-4861.

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
IOSR Journal of Applied Physics (IOSR-JAP)
ISSN: 2278-4861. Volume 2, Issue 3 (Nov. - Dec. 2012), PP 13-23
www.iosrjournals.org
Approximate Solution of Schrodinger Equation for
Trigonometric Scarf Potential with the Poschl-Teller Non-central
potential Using NU Method
C. Cari1, A.Suparmi2
1, 2
(Physics Department, SebelasMaret University, Indonesia)
Abstract: The approximate analytical solution of Schrodinger equation for Scarf potential plus
trigonometricPoschl-Teller potential is investigated using Nikiforov-Uvarov method. The bound state energy
eigenvalues are given in the close form and the corresponding radial and angular eigenfunctions are formulated
in the form of the generalized Jacobi Polynomials. The trigonometric Poschl-Teller potential causes the energy
of Scarf potensial decreases as the orbital quantum number increases. The energy spectrum and the radial wave
function of Scarf potential are produced by the absent of Poschl-Teller potential.
Keywords: Nikiforov-Uvarov method, Schrodinger equation, Trigonometric Scarf I, Poschl-Teller potential.
I.
Introduction
The exact analytical solution of Schrodinger equations for a class of trigonometric shape invariant
potentials are only possible if the angular momentum l=0 . However, for β‰  0 , the Schrodinger equation can
only be solved approximately for different suitable approximation scheme. One of the suitable approximation
scheme is conventionally proposed by Greene and Aldrich.[1-2] The approximate bound state solutions of
Schrodinger equation with exponential- line potential such as Eckart potential, Hulthen potential, and Rosen
Morse potential have been intensively investigated by some authors.[3-6] It is well known that these solutions
play an essential role in the relativistic and non-relativistic quantum mechanics for some physical potentials of
interest.
Recently, conciderably efforts have been paid to obtain the exact solution of non-central potentials.
There are only a few potentials for which the Schrodinger equation can be solved exactly. In general, one has to
resort to numerical techniques or approximation schemes. For many quantum mechanical systems, most
approximation methods used are shifted 1/N expansion, WKB method, perturbation method, supersymmetric
quantum mechanics and idea of shape invariance, etc. Although some methods produce eigenvalues easily but
give complicated eigenfunctions.
In recent years, numerous studies have been made in analyzing the bound state of charged particle
moving in a vector potential and a non-central scalar potential, such as an electron moving in a Coulomb field
with simultaneously precence of Aharonov-Bohm field[7,8], or/and magnetic monopole[9], Makarov potential
[10]or ring-shaped-oscillator potential [11-15], etc. In most of these studies, the eigenvalues and eigenfunctions
are obtained using separation variables in spherical coordinate system. Very recently, supersymmetric quantum
mechanics with the idea of shape invariance [16-18], factorization method [14-19], and Nikiforov-Uvarov
method [20-21] are widely used to derive the energy spectrum and the wave function of a charge particle
moving in non-central potential
In this paper we will attempt to solve the Schrodinger equation for trigonometric Scarf potential plus
trigonometric Poschl-Teller non-central potential using Nikiforov-Uvarov (NU) method.[20] The trigonometric
Scarf potential is also called as generalized Poschl-Teller potential[22]. The NU method, that was developed by
Nikiforov-Uvarov [20], was used and applied by reducing the second order differential equations to the
hypergeometric type equation by a suitable change of variable.The trigonometric Scarf potential and
trigonometric Poschl-Teller play the essential roles in electrodynamics interatomic and intermolecular forces
and can be used to describe molecular vibrations. Some of these trigonometric potential are exactly solvable or
quasi – exactly solvable and their bound state solutions have been reported.[23-26]
This paper is organized as follows. In section 2, we review the Nikiforov-Uvarov method
briefly. In section 3, we find the bound state energy solution and radial wave function from the
solution of the radial Schrodinger equation, and the angular wave functions are derived in section 4. A
brief conclusion is presented in section 5.
www.iosrjournals.org
13 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
II.
Review Of Nikiforov-Uvarov Method
The one-dimensional Schrodinger equation of any shape invariant potential can be reduced into
hypergeometric or confluent hypergeometric type differential equation by suitable variable transformation
[3,4,15,17].
The hypergeometric type differential equation, which can be solved using Nikiforov-Uvarovmethod is
presented as
πœ• 2 πœ“(𝑠)
𝜏 (𝑠) πœ•πœ“ (𝑠)
+ 𝜍 (𝑠)
πœ• 𝑠2
πœ•π‘ 
+
𝜍 (𝑠)
𝜍2
πœ“(𝑠) = 0 ,
(1)
where𝜍 𝑠 and 𝜍(𝑠) are polynomials at most in the second order, and 𝜏(𝑠) is first order polynomial.
Equation (1) can be solved using separation of variable method which is expressed as
πœ“ = πœ™ 𝑠 𝑦(𝑠),
(2)
By inserting equation (2) into equation (1) we get hypergeometric type equation as
𝜍
πœ• 2 𝑦 (𝑠)
πœ•π‘ 2
+𝜏
πœ•π‘¦ (𝑠)
πœ•π‘ 
+ πœ†π‘¦(𝑠) = 0
(3)
andπœ™ 𝑠 is a logarithmic derivative whose solution is obtained from condition
πœ™β€²
πœ™
πœ‹
=𝜍
(4)
where the function πœ‹(𝑠) and the parameter πœ† are defined as
πœ‹=
πœβ€²βˆ’πœ
± (
2
𝜍 β€²βˆ’πœ 2
)
2
βˆ’ 𝜍 + π‘˜πœ
(5)
πœ† = π‘˜ + πœ‹β€²
(6)
The value of k in equation (5) can be found from the condition that under the square root of equation (5) have to
be square of polynomial which is mostly first degree polynomial and therefore the discriminate of the quadratic
expression is zero. A new eigenvalue of equation (3) is
πœ† = πœ†π‘› = βˆ’π‘›πœ β€² βˆ’
where𝜏 = 𝜏 + 2πœ‹ ,
𝑛(π‘›βˆ’1)
2
πœβ€²β€² , n = 0, 1, 2,
(7)
(8)
The new energy eigenvalue is obtained using equation (6) and (7).
To generate the energy eigenvalues and the corresponding eigenfunction, the condition that 𝜏 β€² < 0 is required.
The solution of the second part of the wave function, yn(s), is connected to Rodrigues relation [15] which is given
as
𝐢
𝑦𝑛 𝑠 = 𝜌 𝑛𝑠
𝑑𝑛
𝑑𝑠 𝑛
𝜍 𝑛 (𝑠)𝜌(𝑠)
(9)
whereCn is normalization constant, and the weight function 𝜌(𝑠) satisfies the condition
πœ• (𝜍𝜌 )
πœ•π‘ 
= 𝜏 𝑠 𝜌(𝑠)
(10)
The wave function of the system is therefore obtained from equation (4) and (9).
III.
Solution Of Schrodinger Equation For Trigonometric Scarf Potential Combined With
Trigonometric Poschl-Teller Potential Using Nu Method
The non-central potential which is combination of trigonometric Scarf potential and trigonometric
Poschl-Teller non-cental potential given as
𝑉 π‘Ÿ, πœƒ =
ℏ2 𝛼 2
𝑏 2 +π‘Ž π‘Žβˆ’1
2𝑀
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
βˆ’
1
2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
2𝑏(π‘Žβˆ’ )cos π›Όπ‘Ÿ
+
ℏ2
πœ… πœ… βˆ’1
2π‘€π‘Ÿ 2
𝑠𝑖𝑛 2 πœƒ
+
πœ‚(πœ‚ βˆ’1)
(11)
π‘π‘œπ‘  2 πœƒ
1
where 𝑏 2 + π‘Ž π‘Ž βˆ’ 1 > 0, 2𝑏 π‘Ž βˆ’ > 0, 𝛼 is related to range of the trigonometric Scarf potential with the
2
unit of the inverse of length, 0 < π›Όπ‘Ÿ < πœ‹, πœ… > 1 , πœ‚ > 1 and 0 ≀ πœƒ ≀ πœ‹. Trigonometric Scarf potential is
potential model that used to describe the behavior quark-gluon dynamics. [25]
The three dimensional time-independent Schrodinger equation for trigonometric Scarf
potential[11,14] combined with trigonometric Poschl-Teller non-central potential is
ℏ2
βˆ’ 2𝑀
1 πœ•
π‘Ÿ 2 πœ•π‘Ÿ
πœ•
1
π‘Ÿ 2 πœ•π‘Ÿ + π‘Ÿ 2 π‘ π‘–π‘›πœƒ
πœ•
πœ•πœƒ
πœ•
1
πœ•2
π‘ π‘–π‘›πœƒ πœ•πœƒ + π‘Ÿ 2 𝑠𝑖𝑛 2 πœƒ πœ•πœ‘ 2 πœ“ π‘Ÿ, πœƒ, πœ‘ +
2
2
ℏ 𝛼2 𝑏 +π‘Ž π‘Žβˆ’1
2𝑀
𝑠𝑖𝑛2 π›Όπ‘Ÿ
βˆ’
2𝑏(π‘Žβˆ’12 )cos π›Όπ‘Ÿ
𝑠𝑖𝑛2 π›Όπ‘Ÿ
+
ℏ22π‘€π‘Ÿ2πœ…πœ…βˆ’1𝑠𝑖𝑛2πœƒ+πœ‚(πœ‚βˆ’1)π‘π‘œπ‘ 2πœƒπœ“π‘Ÿ,πœƒ,πœ‘=πΈπœ“π‘Ÿ,πœƒ,πœ‘
(12)
The three dimensional Schrodinger equation expressed in equation (12) is solved using variable separation
method by setting πœ“ π‘Ÿ, πœƒ, πœ‘ = 𝑅 π‘Ÿ 𝑃 πœƒ πœ™(πœ‘) so we get
www.iosrjournals.org
14 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
1 πœ•
πœ•
π‘Ÿ 2 πœ•π‘Ÿ
𝑅 πœ•π‘Ÿ
πœ•2
1
πœ™π‘ π‘– 𝑛 2 πœƒ πœ• πœ‘ 2
2
βˆ’π‘Ÿ 𝛼
𝑏 2 +π‘Ž π‘Ž βˆ’1
2
βˆ’
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
πœ… πœ…βˆ’1
+
+
𝑠𝑖𝑛 2 πœƒ
πœ‚ (πœ‚ βˆ’1)
1
2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
2𝑏 (π‘Žβˆ’ )cos π›Όπ‘Ÿ
+
2π‘€π‘Ÿ 2
ℏ2
1
𝐸 = βˆ’ π‘ƒπ‘ π‘–π‘›πœƒ
πœ•
πœ•πœƒ
πœ•
π‘ π‘–π‘›πœƒ πœ•πœƒ βˆ’
= πœ† = 𝑙(𝑙 + 1)
π‘π‘œπ‘  2 πœƒ
(13)
From equation (13) we get three differential equations with single variable as following:
1 πœ•
πœ•
π‘Ÿ 2 πœ•π‘Ÿ
𝑅 πœ•π‘Ÿ
1
βˆ’ π‘ƒπ‘ π‘–π‘›πœƒ
1
πœ•2
πœ™ πœ•πœ‘2
2
βˆ’π‘Ÿ 𝛼
πœ•
𝑏 2 +π‘Ž π‘Ž βˆ’1
2
βˆ’
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
πœ•
1
2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
2𝑏 (π‘Žβˆ’ )cos π›Όπ‘Ÿ
πœ•2
1
πœ… πœ…βˆ’1
π‘ π‘–π‘›πœƒ πœ•πœƒ βˆ’ πœ™π‘ π‘– 𝑛 2 πœƒ πœ• πœ‘ 2 +
πœ•πœƒ
+
ℏ2
πœ‚ (πœ‚ βˆ’1)
+
𝑠𝑖𝑛 2 πœƒ
2π‘€π‘Ÿ 2
π‘π‘œπ‘  2 πœƒ
𝐸 = πœ† = 𝑙(𝑙 + 1)
(14a)
= πœ† = 𝑙(𝑙 + 1)
(14b)
= βˆ’π‘š2
(14c)
The solution of equation (14c) is
πœ™ = π΄π‘š 𝑒 π‘–π‘šπœ‘
(15)
which is the azimuthal part of wave function.
3.1 The Solution Of Radial Wave Function
By setting the new wave function 𝑅 =
𝑑 2πœ“
π‘‘π‘Ÿ 2
𝑏 2 +π‘Ž π‘Žβˆ’1
βˆ’ 𝛼2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
βˆ’
1
2𝑏(π‘Žβˆ’ )cos π›Όπ‘Ÿ
2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
πœ“(π‘Ÿ )
π‘Ÿ
πœ“+
into equation (14a) we get
2𝑀
ℏ2
πΈπœ“ βˆ’
𝑙 𝑙+1
The conventional approximation for centrifugal term
1
1
β‰… 𝛼 2 𝑑0 + 𝑠𝑖𝑛 2 π›Όπ‘Ÿ
π‘Ÿ2
π‘Ÿ2
[1]
πœ“=0
(16)
obtained for π›Όπ‘Ÿ<<<1 is
(17)
1
where 𝑑0 = 12 . By substituting equation (17) into equation (16) we obtain
𝑑 2πœ“
π‘‘π‘Ÿ 2
𝑏 2 +π‘Ž π‘Žβˆ’1 +𝑙 𝑙+1
βˆ’ 𝛼2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
βˆ’
1
2
𝑠𝑖𝑛 2 π›Όπ‘Ÿ
2𝑏(π‘Ž βˆ’ )cos π›Όπ‘Ÿ
πœ–2
βˆ’ 𝑙 𝑙 + 1 𝑑0 βˆ’ 𝛼 2 πœ“ = 0
(18)
2𝑀
where ℏ2 𝐸 = βˆ’πœ– 2
(19)
By making a coordinate transformation, cos π›Όπ‘Ÿ = 𝑠, in equation (18), which is inspired by variable
transformation in SUSY WKB[14], then equation (18) becomes
1 βˆ’ 𝑠2
𝑑 2 πœ“(𝑠)
𝑑 𝑠2
βˆ’π‘ 
π‘‘πœ“ (𝑠)
𝑑𝑠
–
𝑏 2 +π‘Ž π‘Ž βˆ’1 +𝑙 𝑙+1
1βˆ’π‘  2
βˆ’
1
𝑠
2
1βˆ’π‘  2
2𝑏 π‘Žβˆ’
πœ–2
βˆ’ 𝑙 𝑙 + 1 𝑑0 βˆ’ 𝛼 2 πœ“(𝑠) = 0
(20)
where for π›Όπ‘Ÿ = 0 gives𝑠 = 1 and π›Όπ‘Ÿ = πœ‹gives𝑠 = βˆ’1
By comparing equation (20) with equation (1) we get
1
𝜏 = βˆ’π‘ , 𝜍 = 1 βˆ’ 𝑠 2 ,
𝜍 = βˆ’ 𝑏 2 + π‘Ž π‘Ž βˆ’ 1 + 𝑙(𝑙 + 1) βˆ’ 2𝑏 π‘Ž βˆ’ 2 𝑠 βˆ’
Inserting equation (21) into equation (5) we have
𝑠
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
2
𝛼2
πœ‹ = βˆ’ ± 𝑏2 + π‘Ž π‘Ž βˆ’ 1 + 𝑙 𝑙 + 1 βˆ’
+ π‘˜ βˆ’ 2𝑏 π‘Ž βˆ’
1
2
(1βˆ’π‘  2 ) 𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝑠+(
(21)
𝛼2
𝛼2
1
βˆ’ π‘˜+ )𝑠 2
(22)
4
Since the expression under the square root in equation (22) is quadratic expression with variable s and it has to
be square of first degree polynomial, then it can be rewritten as
𝑠
πœ‹=βˆ’ ±
2
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝛼2
βˆ’π‘˜+
1
4
(𝑠 βˆ’
1
2𝑏 π‘Ž βˆ’
2
2
𝛼 𝑙 𝑙+1 𝑑 0 +πœ– 2
1
2(
βˆ’π‘˜+ )
2
4
𝛼
)
(23)
and
1
2
2𝑏 π‘Ž βˆ’ 2
βˆ’4
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝛼2
1
βˆ’π‘˜+4
𝑏2 + π‘Ž π‘Ž βˆ’ 1 + 𝑙 𝑙 + 1 βˆ’
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝛼2
+π‘˜ =0
(24)
which is the discriminate of the quadratic expression under the square root. The value of k can be obtained from
the solution of equation (24). By setting
𝛼 2 𝑙 𝑙+1 𝑑 +πœ– 2
1
0
𝑝2 =
βˆ’π‘˜+4
𝛼2
equations (23) and (24) become
1
2
𝑠
2𝑏 π‘Žβˆ’
2
2𝑝 2
πœ‹ = βˆ’ ±π‘ π‘ βˆ’
1
and 2𝑏 π‘Ž βˆ’ 2
2
(25)
(26)
1 2
βˆ’ 4𝑝2 𝑏 2 + π‘Ž βˆ’ 2
+ 𝑙 𝑙 + 1 βˆ’ 𝑝2 = 0
(27)
To fulfill the requirement that πœβ€² < 0 where 𝜏 = 𝜏 + 2πœ‹ lead us to make a choice of πœ‹ in equation (26) as
www.iosrjournals.org
15 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
𝑏 π‘Žβˆ’
1
πœ‹ = βˆ’π‘  𝑝 + 2 +
1
2
(28)
𝑝
2
From equation (27) we obtain the values of p as
1 2
+𝑙 𝑙+1 +
2
𝑏 2 + π‘Žβˆ’
𝑝12 =
2
1 2
1
+𝑙 𝑙+1 βˆ’4 𝑏 π‘Žβˆ’
2
2
𝑏 2 + π‘Žβˆ’
(29a)
2
1 2
+𝑙 𝑙+1 βˆ’
2
𝑏 2 + π‘Žβˆ’
and𝑝22
2
=
1 2
+𝑙 𝑙+1
2
𝑏2 + π‘Žβˆ’
2
1
2
2
βˆ’4 𝑏 π‘Žβˆ’
2
(29b)
To be physically meaning the value of p that satisfies the bound state solution is 𝑝22 expressed in equation (29b).
By inserting the value of 𝑝22 in equation (29b) into equation (23) we obtain the
𝛼 2 𝑙 𝑙+1 𝑑 +πœ– 2
1
0
π‘˜=
βˆ’ 𝑝22 + 4
𝛼2
By using 𝜏 = 𝜏 + 2πœ‹ together with the values of πœ‹(s) and 𝜏 we obtain
1
𝜏2 = βˆ’π‘  + 2 βˆ’π‘  𝑝2 + 2 +
1
2
𝑏 π‘Žβˆ’
= βˆ’π‘  2𝑝2 + 2 +
𝑝2
(30)
1
2
2𝑏 π‘Ž βˆ’
(31)
𝑝2
Now by using the values of πœ‹(s), 𝜏, k, 𝜍(𝑠) and 𝜏(𝑠) we get,
πœ†=
𝛼 2 𝑙 𝑙+1 𝑑 0 +πœ– 2
𝛼2
1
1
+ 4 βˆ’ 𝑝22 βˆ’ 𝑝2 βˆ’ 2
(32)
𝑛 𝑛 βˆ’1
2
Andπœ† = πœ†π‘› = βˆ’π‘› βˆ’2𝑝 βˆ’ 2 βˆ’ 2
βˆ’2 = 2𝑝𝑛 + 𝑛 + 𝑛
(33)
From equations (32) with (33) we have
1
Orπœ– 2 = 𝛼 2 (𝑝2 + 𝑛 + 2)2 βˆ’π›Ό 2 𝑙 𝑙 + 1 𝑑0
(34)
For bound state solution the value of p2 which is chosen from equations (29b) that satisfies equation (34) is
1 2
+𝑙 𝑙+1 βˆ’
2
𝑏2+ π‘Ž βˆ’
𝑝 = 𝑝2 =
2
1 2
1
+𝑙 𝑙+1 βˆ’4 𝑏 π‘Ž βˆ’
2
2
𝑏2+ π‘Ž βˆ’
2
(35)
2
By inserting equations (16) and (35) into equation (34) we get the energy spectra of Scarf potential plus
trigonometric Poschl-Teller potential given as
2
𝑏 2 + π‘Žβˆ’
β„πŸ
𝐸𝑛 = πŸπ‘΄ 𝛼 2
1 2
+𝑙 𝑙+1
2
1 2
+𝑙 𝑙+1
2
𝑏 2 + π‘Žβˆ’
βˆ’
2
1
2
2
βˆ’4 𝑏 π‘Žβˆ’
2
1
+𝑛+2
βˆ’ 𝑙 𝑙 + 1 𝑑0
(36)
For special case, 𝑙 = 0, the value of p is
𝑝=
1 2
π‘Žβˆ’2
1
= π‘Žβˆ’2
(37)
and so we get the usual energy spectra of trigonometric Scarf potential given as
β„πŸ
𝐸𝑛 = πŸπ‘΄ 𝛼 2 (π‘Ž + 𝑛)2
(38)
The energy spectrum of the trigonometric Scarf potential for l = 0 is in agreement with the result derived using
Supersymmetric QM.[26,27]
The energy eigenfunctions are obtained using equations (4), (9), and (10). By inserting equations (21) and (31)
into equation (10) we obtain the weight function 𝜌(𝑠)
1
2
β€²
βˆ’2𝑠 𝜌 + (1 βˆ’ 𝑠 )𝜌 = 𝑠 βˆ’2𝑝 βˆ’ 2 +
2𝑏 π‘Ž βˆ’ 2
𝜌
𝑝
and after integrate it we get
1
+𝑝 2
2
𝑝
βˆ’π‘ π‘Ž βˆ’
1
+𝑝 2
2
𝑝
1
+𝑝 2
2
𝑝
𝑏 π‘Žβˆ’
1
+𝑝 2
2
𝑝
βˆ’π‘ π‘Ž βˆ’
𝑏 π‘Žβˆ’
𝜌 = (1 βˆ’ 𝑠)
(1 + 𝑠)
= (1 βˆ’ π‘π‘œπ‘  π›Όπ‘Ÿ)
(1 + π‘π‘œπ‘  π›Όπ‘Ÿ)
(39)
The first part of the energy eigenfunction obtained by inserting equations (21) and (28) into equation (4) is
1
+𝑝 2 1
2
+
2𝑝
4
βˆ’π‘ π‘Ž βˆ’
πœ™ 𝑠 = (1 βˆ’ 𝑠)
𝜁 1
+
2 4
1
βˆ’π‘ π‘Žβˆ’ +𝑝 2
2
= (1 βˆ’ π‘π‘œπ‘  π›Όπ‘Ÿ)
where𝜁 =
𝑝
(1 + π‘π‘œπ‘  π›Όπ‘Ÿ)
1
+𝑝 2 1
2
+
2𝑝
4
𝑏 π‘Žβˆ’
1+𝑠
= (1 βˆ’ 𝑠)
𝜁 1
+
2 4
1+𝑠
𝛿 1
+
2 4
= βˆ’π‘ž + 𝑝 , 𝛿 =
𝛿 1
+
2 4
(40)
1
2
𝑏 π‘Žβˆ’ +𝑝 2
𝑝
= π‘ž+𝑝
www.iosrjournals.org
(41)
16 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
From equations (32) and (41) we get
1 2
+𝑙
2
𝑏 2+ π‘Ž βˆ’
𝜁=βˆ’
𝑙+1
1 2
+𝑙
2
𝑏 2+ π‘Ž βˆ’
+
2
𝑙+1
2
1
2
+
2
1 2
+𝑙 𝑙+1
2
𝑏 2 + π‘Žβˆ’
𝛿=
1 2
+𝑙 𝑙+1
2
2
𝑏 2 + π‘Žβˆ’
+
1 2
+𝑙
2
𝑏 2 + π‘Žβˆ’
βˆ’4 𝑏 π‘Ž βˆ’
βˆ’4 𝑏 π‘Žβˆ’
𝑏 2 + π‘Žβˆ’
+
2
βˆ’
1 2
+𝑙
2
𝑏 2 + π‘Žβˆ’
2
𝑙+1
1
2
1 2
+𝑙 𝑙+1
2
βˆ’
1 2
+𝑙 𝑙+1
2
𝑏 2 + π‘Žβˆ’
2
βˆ’4 𝑏 π‘Ž βˆ’
2
2
1
2
𝑙+1
2
(42a)
1
2
2
βˆ’4 𝑏 π‘Žβˆ’
2
(42b)
and
1 2
+𝑙 𝑙+1
2
𝑏2+ π‘Ž βˆ’
𝑝=
1 2
+𝑙 𝑙+1
2
𝑏 2 + π‘Žβˆ’
βˆ’
2
2
1
2
βˆ’4 𝑏 π‘Žβˆ’
=
2
𝜁 +𝛿
(42c)
2
The second part of the wave function is obtained using Rodrigues relation expressed in equations (9). By
substituting equations (21) and (39) into equation (9) we get
𝑦𝑛 𝑠 =
𝑦𝑛 𝑠 =
(1 βˆ’ 𝑠)
1
1
βˆ’π‘ π‘Ž βˆ’ +𝑝 2
𝑏 π‘Ž βˆ’ +𝑝 2 𝑑𝑠 𝑛
2
2
𝑝
𝑝
(1βˆ’π‘ )
(1+𝑠)
𝑛
𝐢𝑛
𝑑
𝜁+𝑛
(1βˆ’π‘ )𝜁 (1+𝑠)𝛿 𝑑𝑠 𝑛
(𝜁 ,𝛿)
π‘›π‘Ÿ π‘›π‘Ÿ
2 π‘›π‘Ÿ ! 𝑃𝑛 π‘Ÿ
(𝜁 ,𝛿)
and𝑃𝑛
1
+𝑝 2
2
+𝑛
𝑝
𝑏 π‘Žβˆ’
(1 + 𝑠)
(43a)
(1 + 𝑠)𝛿 +𝑛
(1 βˆ’ 𝑠)
𝑦𝑛 π‘Ÿ 𝑠 = 𝐢𝑛 π‘Ÿ βˆ’1
1
+𝑝 2
2
+𝑛
𝑝
βˆ’π‘ π‘Ž βˆ’
𝑑𝑛
𝐢𝑛
(43b)
`
(𝑠)(43c)
(𝜁 ,𝛿 )
𝑃𝑛 π‘Ÿ (𝑠)
π‘π‘œπ‘ β„Ž π›Όπ‘Ÿ =
is the Jacobi polynomial and 𝑦𝑛 π‘Ÿ is normalized.
From equation (43a) we get the first four of second part of radial wave function or Jacobi polynomials as
follows:
𝑦0 𝑠 = 𝐢0
𝑦1 𝑠 = 𝐢1 βˆ’ 𝜁 + 𝛿 + 2 𝑠 + 𝛿 βˆ’ 𝜁
(44a)
𝑦2 𝑠 = 𝐢2 𝜁 + 𝛿 + 4 𝜁 + 𝛿 + 3 𝑠 2 βˆ’ 2 𝛿 βˆ’ 𝜁 𝜁 + 𝛿 + 3 𝑠 + 𝛿 βˆ’ 𝜁 2 βˆ’ 𝜁 + 𝛿 + 4
(44b)
The radial wave function reduce to
Finally the complete radial wave function obtained by using equation (2), (40), (41) and (42a) is given as
πœ“π‘› π‘Ÿ π‘Ÿ = πœ“π‘› π‘Ÿ 𝑠 = 𝐢𝑛 π‘Ÿ βˆ’1
𝜁 1
+
2 4
𝛿 1
+
2 4
π‘›π‘Ÿ
2𝑛 π‘Ÿ π‘›π‘Ÿ ! (1 βˆ’ 𝑠)
𝜁 1
+
2 4
1+𝑠
𝛿 1
+
2 4
(𝜁 ,𝛿)
𝑃𝑛 π‘Ÿ
(𝑠)
(𝜁 ,𝛿)
= 𝐡𝑛 π‘Ÿ (1 βˆ’ 𝑠)
1+𝑠
𝑃𝑛 (𝑠)
(45)
where𝐡𝑛 is the new normalisation factor of the radial wave function and it is determined by normalization
condition
π›Όπ‘Ÿ =πœ‹
𝑠=1
𝑑𝑠
πœ“π‘› π‘Ÿ (π‘Ÿ)πœ“π‘š (π‘Ÿ) π‘‘π‘Ÿ = 𝑠=βˆ’1 πœ“π‘› π‘Ÿ (𝑠)πœ“π‘š (𝑠)
= 𝛿𝑛 π‘Ÿ π‘š
(46)
π›Όπ‘Ÿ =0
2
𝛼 1βˆ’π‘ 
Inserting equation (43) into equation (41) we get
βˆ’1
𝐡𝑛 π‘Ÿ (1
1
𝐡𝑛 π‘Ÿ
2
𝛼
Since
βˆ’ 𝑠)
𝜁 1
+
2 4
1
(1 βˆ’ 𝑠)𝜁
βˆ’1
1
(1 βˆ’ 𝑠)𝜁
βˆ’1
𝛿 1
+
2 4
1+𝑠
(𝜁 ,𝛿)
1 + 𝑠 𝛿 𝑃𝑛
1+𝑠
(𝜁,𝛿 )
𝑃𝑛
(𝑠)π΅π‘š (1 βˆ’ 𝑠)
(𝜁 ,𝛿)
(𝑠)𝑃𝑛
𝜁 1
+
2 4
1+𝑠
𝛿 1
+
2 4
(𝜁 ,𝛿)
π‘ƒπ‘š
(𝑠)
𝑑𝑠
βˆ’π›Ό
1βˆ’π‘  (𝑠+1)
(𝑠) 𝑑𝑠 = 1
(𝜁 ,𝛿 )
𝛿 (𝜁,𝛿 )
𝑃𝑛 (𝑠)𝑃𝑛 (𝑠) 𝑑𝑠
=
= 𝛿𝑛 π‘Ÿ π‘š
(47)
2 𝜁+𝛿 +1 Ξ“ 𝑛 π‘Ÿ +𝜁+1 Ξ“(𝑛 π‘Ÿ +𝛿 +1)
2𝑛 π‘Ÿ +𝜁 +𝛿 +1 Ξ“(𝑛 π‘Ÿ +𝜁+𝛿+1)
(48)
then from equation (42) we obtain the normalization constant of the wave function as
𝐡𝑛 =
𝛼 2𝑛 π‘Ÿ +𝜁 +𝛿 +1 Ξ“(𝑛 π‘Ÿ +𝜁+𝛿+1)
(49)
2 𝜁+𝛿 +1 Ξ“ 𝑛 π‘Ÿ +𝜁+1 Ξ“(𝑛 π‘Ÿ +𝛿+1)
For l = 0, equations (42a) and (42b) become
1
1
𝜁 = π‘Ž βˆ’ 2 βˆ’ 𝑏and𝛿 = π‘Ž βˆ’ 2 + 𝑏
By inserting equation (50) into equation (45) and setting π‘›π‘Ÿ = 0 then equation (45) becomes
π‘Ž βˆ’π‘
π‘Ž +𝑏
π›Όπ‘Ÿ
(50)
π›Όπ‘Ÿ
πœ“0 π‘Ÿ = 𝐡0 (1 βˆ’ 𝑠) 2 1 + 𝑠 2 = 𝐡0 (𝑠𝑖𝑛 ) π‘Žβˆ’π‘ (π‘π‘œπ‘  ) π‘Ž+𝑏
(51)
2
2
Equation (51) is ground state wave function of trigonometric Scarf potential which is in agreement with the
result obtained using SUSY quantum mechanics.
The energy eigenvalue expressed in equation (36) is rewritten as
www.iosrjournals.org
17 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
β„πŸ
𝐸𝑛 = πŸπ‘΄ 𝛼 2
𝜁+𝛿
2
1 2
+𝑛+2
βˆ’ 𝑙 𝑙 + 1 𝑑0
(52)
with𝑙 =
πœ… πœ… βˆ’ 1 + π‘š2 + πœ‚ + 2𝑛𝑙 which is obtained from the solution of angular Schrodinger equation.
The nergy spectrum calculated using equation (52) are listed in Table 2.
The energy eigenvalues in equation (52) and the complete radial wave function expressed in equation (45) both
as a function of 𝜁and𝛿 parameters and in turn the 𝜁and𝛿 parameter depend on the value of potential parameters,
a and b, and also orbital momentum number l therefore both the energy spectrum and the radial wave functions
are function s of potential’s parameters and orbital quantum number. The radial wave functions reduce to the
wave function for Scarf potential plus centrifugal term by the absent of Poschl-Teller potential. The Jacobi
polynomials and the radial wave functions with/without the presence of Poschl-Teller potential are listed in
Table 1.
Table 1. The Jacobi Polynomials and Unnormalized Radial Wave Functions for Scarf plus Poschl-Teller Non
Central Potential
nl m πœ… πœ‚ l
a
b
π‘›π‘Ÿ 𝜁 + 𝛿 𝛿 βˆ’ 𝜁
𝑦𝑛 π‘Ÿ 𝑠
𝑅𝑛 π‘Ÿ π‘Ÿ = πœ™π‘› π‘Ÿ 𝑦𝑛 π‘Ÿ 𝑠
2
2
1
0 0
0
0
0
2
1
0 1.5
1
(1 βˆ’ 𝑠) 0.5 1 + 𝑠 1.5
(1
βˆ’
𝑠) 0.5 1 + 𝑠 1.5 𝐢1 βˆ’ 5 𝑠
𝐢
βˆ’
5
𝑠
+
2
0 0
0
0
0
2
1
1 1.5
1
1
0
0
0
0
0
2
1
2
1.5
1
𝐢2 42𝑠 2 βˆ’ 24s βˆ’ 3
2
0
0
0
4
2
1
1
0.32
4.8
𝐢1 (-2.64s +9.6)
nl
m
πœ…
πœ‚
l
a
b
2
0
0
0
4
2
1
π‘›π‘Ÿ 𝜁 + 𝛿 𝛿 βˆ’ 𝜁
2
2
2 0.32
4.8
2
1
0
0
5
2
1
1
0.35
2
1
2
0
5.7
2
1
1
0.23
2
1
0
4
9
2
1
1
0.16
2
1
2
4
9.7
2
1
1
7.31
2
0
2
0
5.4
2
1
1
0.24
5.7
6
6.4
3
9.6
6
7.3
2
6.1
4
(1 βˆ’ 𝑠)
(1 βˆ’ 𝑠)βˆ’2
+9.6)
𝑦𝑛 π‘Ÿ 𝑠
+ 2)
𝐢2 42𝑠 2
βˆ’ 24s βˆ’ 3
1 + 𝑠 2.31 𝐢1
(-2.64s
0.5
1+𝑠
1.5
𝑅𝑛 π‘Ÿ π‘Ÿ = πœ™π‘› π‘Ÿ 𝑦𝑛 π‘Ÿ 𝑠
C1(16.9s2-69.9s87.52)
𝐢1 (--2.7s + 11.52)
(1 βˆ’ 𝑠)βˆ’2 1 + 𝑠 2.31
(16.9s269.9s-87.52)
(1 βˆ’ 𝑠)βˆ’2.45 1 + 𝑠 3.30 𝐢1 (--2.7s
+ 11.52)
𝐢1 (-2.46s + 12.86)
(1 βˆ’ 𝑠)βˆ’2.85 1 + 𝑠
+ 12.86)
𝐢1 (-2.32s + 19.32)
(1 βˆ’ 𝑠)βˆ’4.5 1 + 𝑠
C (-16.62s +14.64)
(1
βˆ’ 𝑠) 0.24 1 + 𝑠 7.57 𝐢1 (βˆ’16.62s
+ 14.64)
(1 βˆ’ 𝑠)βˆ’2.7 1 + 𝑠 3.44 𝐢1 (-2.48s +
12.28)
𝐢1 (-2.48s + 12.28)
3.58
5.16
𝐢1 (-2.46s
𝐢1 (βˆ’2.32s
+ 19.32))
Table 2. The First and 2nd Excited State Of Scarf
l
0
1
2
3
3.4
4
5
5.4
5.7
6
7.4
9
9.7
a
2
2
2
2
2
2
2
2
2
2
2
2
2
b
1
1
1
1
1
1
1
1
1
1
1
1
1
𝜁+ 𝛿
2
1.5
0.69
0.5
0.39
0.35
0.32
0.35
0.24
0.23
0.22
0.19
0.16
0.14
E1
ℏ2
𝛼2
2𝑀
4
4.63
3.5
2,57
2.17
1.64
0.92
0.15
-0.18
-0.54
-2.32
-4.74
-5.96
www.iosrjournals.org
E2
ℏ2
2𝑀
𝛼2
16
10.01
8.5
7.35
6.87
6.28
5.62
4.63
4.27
3.9
2.06
-0.42
-2.68
18 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
3.2 The Solutionofangularschrodinerequationfor Scarftpotentialcombined Withnon Central PoschlTeller Potential.
The angular Schrodinger equation in equation (14b) is rewritten as
1
πœ•
π‘š 2𝑃
πœ•π‘ƒ
πœ… πœ… βˆ’1
πœ‚(πœ‚ βˆ’1)
π‘ π‘–π‘›πœƒ πœ•πœƒ βˆ’ 𝑠𝑖𝑛 2 πœƒ βˆ’ 𝑠𝑖𝑛 2 πœƒ + π‘π‘œπ‘  2 πœƒ 𝑃 + 𝑙 𝑙 + 1 𝑃 = 0
(49)
wherel(l+1) is separation constant. By making a variable transformation π‘π‘œπ‘ 2πœƒ = π‘₯ in equation (49) the we get
π‘ π‘–π‘›πœƒ πœ•πœƒ
πœ• 2𝑃
1 βˆ’ π‘₯2
1
βˆ’
πœ•π‘₯2
3
𝑑𝑃
+2π‘₯
2
𝑑𝑠
2 πœ… πœ… βˆ’1 +π‘š 2 1+π‘₯
βˆ’
+
4(1βˆ’π‘₯ 2 )
2πœ‚(πœ‚ βˆ’1)(1βˆ’π‘₯)
4(1βˆ’π‘₯ 2 )
βˆ’
𝑙 𝑙+1 (1βˆ’π‘₯ 2 )
4(1βˆ’π‘₯ 2 )
𝑃=0
(50)
The form of equation (50) is similar to the equation (1) thus we have
1
3
𝜍 = 1 βˆ’ π‘₯2 , 𝜏 = βˆ’ 2 + 2 π‘₯
{2 πœ… πœ…βˆ’1 +π‘š 2 +2πœ‚ (πœ‚βˆ’1)βˆ’π‘™ 𝑙+1
𝜍=βˆ’
+
4
Using equations (5) and (51) we obtain
πœ‹=
1βˆ’π‘₯
4
2 πœ… πœ… βˆ’1 +π‘š 2 βˆ’2πœ‚(πœ‚βˆ’1)
4
2 πœ… πœ…βˆ’1 +π‘š 2 +2πœ‚(πœ‚βˆ’1)βˆ’π‘™ 𝑙+1
±
4
+π‘˜+
1
16
+
π‘₯+
𝑙 𝑙+1
4
(51a)
π‘₯2 }
(51b)
2 πœ… πœ…βˆ’1 +π‘š 2 βˆ’2πœ‚(πœ‚ βˆ’1)
4
βˆ’
1
8
π‘₯+
𝑙 𝑙+1
4
βˆ’π‘˜+
1
16
π‘₯2
(52)
The quadratic expression under the root of equation (52) must be square of first degree polynomial therefore
equation (42) can be rewritten as
1βˆ’π‘₯
πœ‹=
4
𝑙 𝑙+1
±
1
βˆ’ π‘˜ + 16
4
π‘₯+
2 πœ… πœ… βˆ’1 +π‘š 2 βˆ’2πœ‚ (πœ‚ βˆ’1) 1
βˆ’
4
8
𝑙 𝑙+1
1
2
βˆ’π‘˜+
4
16
(53)
and the discriminate of the quadratic expression under the square root must be zero, that is
2 πœ… πœ… βˆ’1 +π‘š 2 βˆ’2πœ‚ (πœ‚βˆ’1)
1
2
𝑙 𝑙+1
1
2 πœ… πœ…βˆ’1 +π‘š 2 +2πœ‚(πœ‚ βˆ’1)
βˆ’ 8 βˆ’ 4 4 βˆ’ π‘˜ + 16
4
To calculate the values of k in equation (54) we set
2 πœ… πœ… βˆ’1 +π‘š 2
2πœ‚(πœ‚ βˆ’1)
1
π‘ž=
and𝑑 = 4 + 8 =
4
and so from equation (54) we obtain
π‘˜1 =
1 2
2
𝑙+
4
π‘žβˆ’ 𝑑
βˆ’
πœ‚βˆ’
4
1
+8βˆ’
𝑙 𝑙+1
4
1
+ π‘˜ βˆ’ 16 = 0
(54)
1 2
2
(55)
2
2
(56a)
2
1 2
𝑙+
2
2
π‘ž+ 𝑑
π‘˜2 = 4 βˆ’
2
Therefore from equation (53) and (56) and by imposing the condition that 𝜏 β€² < 0 we obtain
πœ‹1 = βˆ’π‘₯
π‘žβˆ’ 𝑑
2
π‘ž+ 𝑑
1
π‘ž+ 𝑑
1
2
π‘žβˆ’ 𝑑
+4 βˆ’
1
+ 4forπ‘˜1
(57a)
1
πœ‹2 = βˆ’π‘₯
+ 4 βˆ’ 2 + 4 forπ‘˜2
2
By using equations (8), (57a) and (57b) we obtain
𝜏1 = βˆ’2π‘₯
π‘žβˆ’ 𝑑
2
π‘ž+ 𝑑
π‘ž+ 𝑑
+1 βˆ’2
2
π‘žβˆ’ 𝑑
forπ‘˜1
(56b)
(57b)
(58a)
𝜏2 = βˆ’2π‘₯
+1 βˆ’2
forπ‘˜2
(58b)
2
2
By using equations (6), (7), (56), (57), and (58) we obtain the new eigenvalues
πœ†1 =
πœ†2 =
and
1 2
2
𝑙+
4
1 2
𝑙+
2
4
βˆ’
βˆ’
πœ†1 = πœ†π‘› = 2𝑛
π‘žβˆ’ 𝑑
2
βˆ’
2
π‘ž+ 𝑑
2
βˆ’
2
π‘žβˆ’ 𝑑
2
π‘ž+ 𝑑
π‘žβˆ’ 𝑑
2
π‘ž+ 𝑑
2
+
1
forπ‘˜1
(59a)
+ 4 forπ‘˜2
(59b)
4
1
+ 𝑛 𝑛 + 1 for k1
(60a)
πœ†2 = πœ†π‘› = 2𝑛
+ 𝑛 𝑛 + 1 for k2
2
The orbital quantum number is obtained from equations (59) and (60) as
1
𝑙 + 2 = ±2
1
2
πœ… πœ…βˆ’1 +π‘š 2 βˆ’ πœ‚ βˆ’
2
1
+ 𝑛 + 2 for k1
(60b)
(61a)
and
1
𝑙 + 2 = ±2
1
2
πœ… πœ…βˆ’1 +π‘š 2 + πœ‚ βˆ’
2
1
+ 𝑛 + 2 for k2
To have physical meaning, the proper choice of l is the values obtained from k2 thus
𝑙=
πœ… πœ… βˆ’ 1 + π‘š2 + πœ‚ + 2𝑛𝑙
www.iosrjournals.org
(61b)
(62)
19 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
The first part of the wave function obtained by using equations (4) and (53b) is
π‘ž
𝑑
1
+
πœ™=⁑
(1 βˆ’ π‘₯) 2 ⁑
(1 + π‘₯) 2 4
(63)
The weight function for the second part of the wave function obtained by using equations (10), (51a) and (58b)
is
2 π‘ž
2 𝑑
𝜌 = (1 βˆ’ π‘₯) 2 (1 + π‘₯) 2
(64)
By using equations (9), (10) and (64) we obtain the second part of the angular wave function given as
𝑦𝑛 π‘₯ =
𝑑𝑛
𝐢𝑛
πœπ‘› π‘₯ 𝜌 π‘₯
𝜌 π‘₯ 𝑑π‘₯ 𝑛
2 π‘ž
𝑑𝑛
𝐢𝑛
=
(1 βˆ’ π‘₯)
2 𝑑 𝑑π‘₯ 𝑛
(1βˆ’π‘₯) 2 (1+π‘₯) 2
2 π‘ž
2
+𝑛
2 𝑑
+𝑛
2
(1 + π‘₯)
= 𝐡𝑛 𝑃𝑛
𝛼,𝛽
(65)
𝛼,𝛽
where𝑃𝑛
is the Jacobi polynomial, and
𝐡𝑛 = 𝐢𝑛 (βˆ’1)𝑛 2𝑛 𝑛!, 𝛼 = 2π‘ž, 𝛽 = 2𝑑
From equations (2), (63) and (65) we obtain the complete angular wave function as
𝛼
𝛽 1
(66)
𝛼,𝛽
𝑃 πœƒ = 𝐡𝑛 (1 βˆ’ π‘₯)2 (1 + π‘₯) 2 +4 𝑃𝑛
(π‘₯)
(67)
The normalization factor Bn is obtained from the normalization condition of angular wave function which is
expressed in equation (67) as
πœ‹
𝑃 πœƒ 𝑃𝑛 πœƒ π‘ π‘–π‘›πœƒπ‘‘πœƒ = π›Ώπ‘šπ‘›
(68)
0 π‘š
By inserting equation (67) into equation (68) we have
βˆ’
1
𝐡 (1
βˆ’1 π‘š
𝛼
𝛽 1
𝛼,𝛽
βˆ’ π‘₯)2 (1 + π‘₯) 2 +4 π‘ƒπ‘š
𝑑π‘₯
1+π‘₯
Since π‘ π‘–π‘›πœƒπ‘‘πœƒ = βˆ’4π‘π‘œπ‘ πœƒ = βˆ’4
π΅π‘š 𝐡𝑛
1
(1
βˆ’1
2
𝛼,𝛽
𝛼
𝛽 1
(𝑠)𝐡𝑛 (1 βˆ’ π‘₯)2 (1 + π‘₯) 2 +4 𝑃𝑛
𝛼,𝛽
π‘‘πœƒ
(π‘₯) π‘ π‘–π‘›πœƒ 𝑑π‘₯ 𝑑π‘₯ = π›Ώπ‘šπ‘›
(69)
= βˆ’2 2 1 + π‘₯ , then equation (69) can be rewritten as
𝛼,𝛽
βˆ’ π‘₯)𝛼 (1 + π‘₯)𝛽 π‘ƒπ‘š (π‘₯)𝑃𝑛
(π‘₯) 𝑑π‘₯ = π›Ώπ‘šπ‘›
Then the normalization factor obtained from equation (70) is
2 2
(70)
2𝑛 +𝛼+𝛽 +1 𝑛 !Ξ“(𝑛 +𝛼+𝛽 +1)
𝐡𝑛 𝑙 =
2
(71)
1
𝛼 +𝛽 βˆ’
2 Ξ“ 𝑛+𝛼+1 Ξ“(𝑛 +𝛽 +1)
The total wave function of the system is obtained from equations (45), (49), (67), and (71) and is given as
πœ“(π‘Ÿ, πœƒ, πœ‘) = 𝐡𝑛 π‘Ÿ 𝐷𝑛 (1 βˆ’ 𝑠)
𝜁 1
+
2 4
1+𝑠
𝛿 1
+
2 4
(𝜁 ,𝛿)
𝑃𝑛 π‘Ÿ
𝛼
𝛽 1
𝛼,𝛽
(𝑠)(1 βˆ’ π‘₯) 2 (1 + π‘₯) 2 +4 𝑃𝑛 𝑙
(π‘₯)
(72)
Table 3.The First and Second Degree of Jacobi Polynomials with/without The Presence of Non-Central PoschlTeller Potential and The Related Un-Normalized Angular Wave Function, 𝑦1 π‘₯ and 𝑦2 π‘₯ Obtined from
Equation (73b) and (73c)
nl
m
1
1
1
1
1
2
2
0
1
0
0
0
0
1
πœ…
0
0
2
0
2
0
0
πœ‚
0
0
0
2
4
0
0
l
2
3
3.4
4
7.4
4
5
2π‘ž
0
1
1.4
0
1.4
0
1
𝑦𝑛 𝑙 π‘₯
2𝑑
βˆ’0.5
βˆ’1.5π‘₯ βˆ’ 0.5
βˆ’0.5
βˆ’2.5π‘₯ βˆ’ 1.5
βˆ’0.5
βˆ’2.9π‘₯ βˆ’ 1.9
1.5
βˆ’3.5π‘₯ + 1.5
3.5
βˆ’6.9π‘₯ + 2.1
-0.5 8.75π‘₯ 2 + 2.5x βˆ’ 3.25
-0.5
15.75π‘₯ 2 + 10.5x
βˆ’ 2.25
2
1
2
0
5.7
1.7
-0.5
2
1
0
4
9
1
3.5
2
1
2
4
9.7
1.7
3.5
2
0
2
0
5.3
1.4
-0.5
2
0
0
2
6
0
1.5
2
21.84π‘₯ + 18.48x
βˆ’ 0.36
63.75π‘₯ 2 + 37.5x
βˆ’ 2.25
75.44π‘₯ 2 + 29.52x
βˆ’ 5.96
19.11π‘₯ 2 + 14.82x βˆ’
1.29
24.75 π‘₯ 2 βˆ’ 13.5x βˆ’
3.25
www.iosrjournals.org
π‘ƒπ‘™π‘š πœƒ
βˆ’ 3π‘π‘œπ‘  2 πœƒ βˆ’ 1
βˆ’π‘ π‘–π‘›πœƒ 5π‘π‘œπ‘  2 πœƒ βˆ’ 1
𝑠𝑖𝑛1.4 πœƒ βˆ’2.9π‘π‘œπ‘ 2πœƒ βˆ’ 1.9
π‘π‘œπ‘  2 πœƒ βˆ’3.5π‘π‘œπ‘ 2πœƒ + 1.5
1.4
𝑠𝑖 𝑛 πœƒ π‘π‘œ 𝑠 4 πœƒ βˆ’6.9π‘π‘œπ‘  2πœƒ + 2.1
8.75π‘π‘œπ‘  2 2ΞΈ + 2.5π‘π‘œπ‘  2πœƒ βˆ’ 3.25
15.75cos2 2ΞΈ + 10.5cos2ΞΈ
π‘ π‘–π‘›πœƒ
βˆ’ 2.25
𝑠𝑖 𝑛
1.7
πœƒ 21.84cos2 2ΞΈ + 18.48cos2ΞΈ
βˆ’ 0.36
π‘ π‘–π‘›πœƒπ‘π‘œ
𝑠 πœƒ 63.75cos2 2ΞΈ + 37.5cos2ΞΈ
βˆ’ 2.25
𝑠𝑖 𝑛 1.7 πœƒπ‘π‘œ 𝑠 4 πœƒ 75.44cos2 2ΞΈ
+ 29.52cos2ΞΈ βˆ’ 5.96
𝑠𝑖 𝑛 1.4 19.11cos2 2ΞΈ + 14.82cosΞΈ
βˆ’ 1.29
π‘π‘œ 𝑠 2 πœƒ 24.75cos2 2ΞΈ βˆ’ 13.5cosΞΈ βˆ’ 3.25
4
20 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
ο€­3
ο€­2
1
ο€­1
ο€­5
2
3
5
π’€πŸπŸŽπŸŽπŸŽ 𝜽 = π’€πŸŽπŸ’ = πŸ–. πŸ•πŸ“ π’„π’π’”πŸ’ 𝜽 + π’”π’Šπ’πŸ’ 𝜽 βˆ’ πŸπ’„π’π’”πŸπœ½π’”π’Šπ’πŸ 𝜽 + 𝟐. πŸ“(π’„π’π’”πŸ πœ½βˆ’π’”π’Šπ’πŸ 𝜽) βˆ’ πŸ‘. πŸπŸ“
πŸ—
πŸ’
ο€­4
ο€­2
ο€­3
ο€­2
ο€­1
1
2
3
2
4
π’€πŸπŸπŸŽπŸŽ 𝜽 = π’€πŸπŸ“ = π’”π’Šπ’πœ½ βˆ’πŸπŸ“. πŸ•πŸ“ π’„π’π’”πŸ’ 𝜽 + π’”π’Šπ’πŸ’ 𝜽 βˆ’ πŸπ’„π’π’”πŸ πœ½π’”π’Šπ’πŸπœ½ βˆ’ 𝟏𝟎. πŸ“(π’„π’π’”πŸ πœ½βˆ’π’”π’Šπ’πŸπœ½) +
𝟏.πŸ’
βˆ’πŸπŸ—. 𝟏𝟏 π’„π’π’”πŸ’ 𝜽 + π’”π’Šπ’πŸ’ 𝜽 βˆ’ πŸπ’„π’π’” 𝟐 πœ½π’”π’Šπ’πŸ 𝜽 βˆ’ πŸπŸ’. πŸ–πŸ(π’„π’π’”πŸ πœ½βˆ’π’”π’Šπ’πŸ 𝜽) + 𝟏. πŸπŸ—
ο€­4
ο€­2
ο€­3
ο€­2
ο€­1
1
2
3
2
4
π’€πŸπŸŽπŸπŸŽ 𝜽 = π’€πŸŽπŸ“.πŸ’ = 𝟐𝟎.πŸ—πŸ“ π’”π’Šπ’πœ½
ο€­2
ο€­1
ο€­5
1
2
5
π’€πŸπŸŽπŸŽπŸ 𝜽 = π’€πŸŽπŸ” = 𝟐𝟏.πŸπŸ“ π’„π’π’”πŸ 𝜽 βˆ’πŸπŸ’. πŸ•πŸ“ π’„π’π’”πŸ’ 𝜽 + π’”π’Šπ’πŸ’ 𝜽 βˆ’ πŸπ’„π’π’” 𝟐 πœ½π’”π’Šπ’πŸ 𝜽 + πŸπŸ‘. πŸ“ π’„π’π’”πŸ πœ½βˆ’π’”π’Šπ’πŸ 𝜽 + πŸ‘. πŸπŸ“
Figure 1. Polar Diagram Of π‘Œ π‘š
𝑙 With/Without The Presence of Poschl-Teller Potential and The Corresponding
The Three Dimensional Polar Representations of Absolute Values of Angular Function. The Effect Of
2
π‘π‘œπ‘ π‘’π‘
πœƒ Is Similar With The Effect of M, Magnetic Quantum Number Which Change The Direction of
Angular Momentum In Z Direction, As Shown In Figures (B) And (C), While The Effect of 𝑠𝑒𝑐 2 πœƒ
www.iosrjournals.org
21 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
Construction of Jacobi polynomials
The first three un-normalized Jacobi polynomials obtained from equation (65) are
𝑦 0 π‘₯ = 𝐢 0 (73a)
𝑦 1 π‘₯ = 𝐢 1 βˆ’ 2π‘ž βˆ’ 2𝑑 βˆ’ 2 π‘₯ + 2𝑑 βˆ’ 2π‘ž
𝑦 2 π‘₯ = 2π‘ž + 2𝑑 + 4
2π‘ž + 2𝑑 + 4 (73c)
2
2π‘ž + 2𝑑 + 3 π‘₯ βˆ’ 2
2𝑑 βˆ’ 2π‘ž
2π‘ž + 2𝑑 + 3 π‘₯ +
(73b)
2𝑑 βˆ’ 2π‘ž
2
βˆ’
The first and second order of Jacoby polynomials with and without the presence of Poschl-Teller
potential determined analytically using equations (73b) and (73c) and its corresponding polar wave function are
presented in Table 2. By the absent of Poschl-teller potential the angular wave functions reduce to associated
Legendre function but only for which the different values of l and m are even number as shown in the 1st, 2nd, 6th
and 7th rows. The effect of the presence of Poschl-Teller potential is described using the polar diagram of the
angular wave function and three dimensional representation of the absolute value of the angular wave function
as shown in Figure 1. The only significant effect of the presence of Poschl-Teller potential to the angular wave
function is coming from the 𝑠𝑒 𝑐 2 πœƒ term as shown in figure 1 (d). The 𝑠𝑒 𝑐 2 πœƒ term causes the increase of the
orbital quantum number thus change the degeneracy number.[28,29]
IV.
Result And Discussion
The presence of Poschl-Teller non-central potential simultaneously with Scarf potential causes
increases the orbital quantum number and decreases the energy levels of Scarf potential. By setting πœ‚ = πœ… =
𝑙 = 0 the energy spectrum and the radial wave function of the non-central potential reduces to the energy
spectrum and wave function of Scarf potential. For πœ‚ = πœ… = 0 the angular wave function of Scarf potential
with Poschl-Teller reduces to associated Legendre polynomials with l and m differed by even numbers. Both the
radial or angular wave functions are expressed in Jacobi polynomials and the angular wave function is
normalized. It may be concluded that there is an effect of the presence of Poschl-Teller potential to the system
governed by Scarf potential, therefore the Poschl-Teller non-central potential can be considered as the
perturbation part.
V.
Conclusion
It has been shown that the Schrodinger equation of Scarf potential with Poschl-Teller non-central potential
is solved approximately using Nikiforov–Uvarov method with suitable coordinate transformation. The energy
spectrum of the system is obtained in the closed form and the radial and angular wave function is expressed in
Jacobi polynomials. The presence of Poschl-Teller non-central potential causes the decrease in energy spectrum
of Scarf potential and increases the orbital quantum number.
Acknowledgements
This work is partially supported by Hibah Pascasarjana Sebelas Maret University grant No.
2910/UN27.10/PG/2012.
References
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
R.I. Greene and C. Aldrich, Variational wave function for a screened Coulomb potential, Phys. Rev. A 14(6) , (1976) 2363
S.M. Ikhdair and R. server, Approximate eigenvalue and eigen function solutions for the generalized Hulthen potential with any
angular momentum, J. Math. Chem., 42(3) (2007) 461-471
A.N. Ikot and L.E.Akpabio, Approximate solution of the Schrodinger solution with Rosen-Morse potential including the
centrifugal term, App. Phys. Res, 2(2) (2010) 202-208
H. Goudarzi and V. Vahidi, Supersymmetric approach for Eckart potential using NU method,Adv. Studies Theor. Phys. 5(10),
(2011) 469-476
A.R. Amani, M.A. Moghrimoazzen, H. Ghorbanpour, S. Barzegaran, The ladder operators of Rosen Morse potential with
centrifugal term by factorization method, Afr. J. Math. Phys. 10 (2011) 31-37
S.M. Ikhdair, Approximate l-state of the Manning-Rosen potential by using NU method, ISRN Math. Phys. vol 2012,article ID201525 (2012)
V.M. Villalba, Elsevier Science, Bound State of The Hydrogen Atom in The Presence of A Magnetic Monopole Field and An
Ahoronov-Bohm Potential, Phys. Lett. A 193 (1994) 218-222
Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in quantum theory, Phys. Rev. 115 (1959) 485
L. V. Hoang, L.X. Hai, L.I. Komarov and T. S. Romanova, Relativistic Analogy of the Aharonov–Bohm Effect in the Presence of
Coulomb Field and Magnetic Charge, J. Phys. a 25 (1992) 6461
M. Movahedi and M. Hamzavi, Relativistic scattering solution of the Makarov potential, Int. J. phys. Sci. , 6(4) (2011) 891-896
S. Ferrer, A unified treatment for some ring-shaped potentials as a generalized 4-D isotropic oscillator, Mono. Acad. Ci. Zar, Vol.
30 (2006) 11-21
C.Y Chen and S. H. Dong,Exactly complete solutions of the Coulomb potential plus a new ring-shaped potential, Phys. Lett. A
335 (2005) 374
H.X. Quan, L. Guang, W.Z. Min, N.L. Bin, and M. Yan, Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic
Oscillator Potential, Com. Theor. Phys. (China) 53 (2010) 242
www.iosrjournals.org
22 | Page
Approximate Solution of Schrodinger Equation for Trigonometric Scarf Potential With The Poschl –
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
J. Sadeghi and B. Pourhassan, Exact solution of the non-central modified Kratzer potential plus a ring-shaped like potential by the
factorization method, EJTP, 5, 193 (2008).
D. Agboola, Schrödinger Equation with Hulth´en Potential Plus Ring-Shaped Potential, Commun. Theor. Phys. 55 (2011) 972-976
B. Gonul and I. Zorba, Supersymmetric Solutions of Non-Central Potentials, Phys. Lett. A 269 ( 2000) 83
J.C.Sheng, Z.Ying, Z.X. Lin, S.L.Tian, Identity for the Exponential-Type Molecule Potentials and the Supersymmetry Shape
Invariance, Com. Theor. Phys. 36 (2001) 641-646
A.Khare and R.K. Badhuri, Spersymmetry shape invariance and exactly solvable non-central potential, arXiv:hep-th/9310104v1
(1993)1-16
J. Sadeghi,Factorization Method and Solution of the Non-Central ModifedKratzer Potential, Act. Phys. Polonica, A 112 (1) (2007)
23
A. F. Nikiforov and U. B. Uvarov, Special Function in Mathematical Physics, Birkhausa, Basel (1988)
A. P. Raposo, H. J. Weber, D. E. Alvarez-Castillo, and M. Kirchbach,Romanovski Polynomials in Selected Physics
Problems,arXiv:0706.3897v1 [quant-ph] 26 Jun 2007
J. Derezinski and M. Wrochna, Exactly solvable Schrodinger operator, arXiv: 10090541v2 (math-ph) (2010) 1- 20Y. Xu, S. He
and C.S. Jia, Approximate analytical solutions of the Klein-Gordon equation with the P¨oschl-Teller potential including the
centrifugal term, Phys. Scr. 81 (2010) 045001.
A.H. El Kineni and M. Daoud, Coherent States a la Klaude-Perelomov for the Poschl-Teller potentials, Phys. Lett. A 283 (2001)
291-299
MetinAktas, Exact solutions to a new generalized non-central potential in three dimensions, arXiv: quant-ph /0701063v1 (2007)
H. Salehi, Determine the eigen function of Schrodinger equation with non-central potential by using NU method, App. Math. 2
(2011) 999-1004
D.E. Alvarez -Castillo, C. B. Compean, M. Kirchbach, Rotational Symmetry and Degeneracy: A Cotangent-Pertubed Rigid
Rotator of Unpertubed Level Multiplicity, arXiv: 1105.1354v1[quant-ph] (2011)1-10
D.E Alvarez -Castillo and M. Kirbach, Exact Spectrum and Wave Functions of The Hyperbolic Scarf Potential in Terms of Finite
Romanovski Polynomials,Rev. Mex. Fis. E53.2 (2007) 143-154
Flugge, Practical Quantum Mechanics, I (1977)
www.iosrjournals.org
23 | Page
Related documents