Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Math 4 Pre-Calculus Name________________________ Date_________________________ Inverse Trigonometric Functions — 7.6 Inverse Sine Function The inverse sine function, denoted by sin −1 x or arcsin x , is defined by y = sin −1 x y = arcsin x for −1 ≤ x ≤ 1 and − π 2 ≤ y ≤ if and only if if and only if π 2 x = sin y x = sin y . This limits the range to angles in Quadrants I and IV. Graph y = sin −1 x = arcsin x . Domain: 1. Range: Symmetry: Properties of Inverse Sine ( ) sin sin −1 x = sin ( arcsin x ) = x if −1 ≤ x ≤ 1 sin −1 ( sin y ) = arcsin ( sin y ) = y if − 2. 1 sin sin −1 2 3. 2π arcsin sin 3 π 2 ≤ y ≤ π 2 Inverse Cosine Function The inverse cosine function, denoted by cos−1 x or arccos x , is defined by y = cos −1 x y = arc cos x if and only if if and only if x = cos y x = cos y for −1 ≤ x ≤ 1 and 0 ≤ y ≤ π . This limits the range to angles in Quadrants I and II. Graph y = cos −1 x = arccos x . Domain: 4. Range: Properties of Inverse Cosine ( ) cos cos −1 x = cos ( arccos x ) = x if −1 ≤ x ≤ 1 cos −1 ( cos y ) = arccos ( cos y ) = y if 0 ≤ y ≤ π 5. cos cos −1 ( −0.5 ) 6. arccos ( cos π ) Inverse Tangent Function The inverse tangent function, denoted by tan −1 x or arctan x , is defined by y = tan −1 x y = arctan x for any real number x and − π 2 if and only if if and only if < y < π 2 x = tan y x = tan y . This limits the range to angles in Quadrants I and IV. Graph y = tan −1 x = arctan x . Domain: 7. Range: Horizontal Asymptotes: Properties of Inverse Tangent ( ) tan tan −1 x = tan ( arctan x ) = x tan −1 ( tan y ) = arctan ( tan y ) = y ( 8. tan tan −1 2500 9. arctan ( tan π ) ) for every real number x if − π 2 < y < π 2 Find the exact value of the expression whenever it is defined. ( ) 10. s i n−1 − 11. t a n c o s− 1 0 12. c o t s i n − 1 − 52 13. cos 3 2 ( ) ( ( )) ( 1 2 arctan ( 185 ) ) Write the expression as an algebraic expression in x for x > 0 . 14. t an (arcco s x) 15. c o t s i n− 1 x2 − 9 x The given equation has the form y = f ( x ) a) Find the domain of f b) Find the range of f c) Solve for x in terms of y . 16. y = 2 s i n − 1 ( 3x − 4 ) Solve the equation for x in terms of y if x is restricted to the given interval. 17. y = 2 + 3sin x π π − 2 , 2 Use inverse trigonometric functions to find the solutions of the equation that are in the given interval, and approximate the solutions to four decimal places. π π 18. 6 s i n 2x − 8 c o s x + 9 s i n x − 6 = 0 − , 2 2