Download B1.6 – Derivatives of Inverse Trig Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Trigonometric functions wikipedia , lookup

Transcript
B1.6 – Derivatives of Inverse
Trig Functions
IB Math HL - Santowski
(A) Graphs of Inverse Trig Functions

The graphs of the inverse trig
functions are as follows:
(B) Inverse Trig as Functions –
Restrictions



From the graphs previously shown, the
inverse trig “relations” are not functions since
the domain elements do not “match” the
range elements i.e.  not one-to-one
So we need to make domain restrictions in
the original function such that when we
“invert”, our inverse does turn out to be a
function
What domain restrictions shall we make??
(B) Inverse Trig as Functions –
Restrictions



For y = sin(x) between a
max and min (-/2 and /2)
For y = cos(x)  between a
max and min (0 and )
For y = tan(x)  use one
cycle, say between -/2 and
/2
(C) Derivative of f(x) = sin-1(x) on (-½,½)

If y = sin(x), then to make the
inverse, x = sin(y) and we can use
implicit differentiation to find dy/dx
d
x   d sin( y ) 
dx
dx
d
dy
1  sin( y ) 
dy
dx
dy
1  cos( y ) 
dx
1
dy

cos( y ) dx

But can we make a substitution for
cos(y)??
sin 2 y  cos 2 y  1
cos y  1  sin 2 y  x  sin y
cos y  1  x 2





d
1
sin 1 ( x) 
dx
cos y
d
1
sin 1 ( x) 
dx
1 x2
(D) Derivative of f(x) = cos-1(x) on (0,)

If y = cos(x), then to make the
inverse, x = cos(y) and we can
use implicit differentiation to find
dy/dx
d
x   d cos( y) 
dx
dx
d
dy
1  cos( y ) 
dy
dx
dy
1   sin( y ) 
dx
1
dy


sin( y ) dx

But can we make a substitution for
sin(y)??

sin 2 y  cos 2 y  1
sin y  1  cos 2 y  x  cos y
sin y  1  x 2





d
1
cos 1 ( x)  
dx
sin y
d
1
cos 1 ( x)  
dx
1 x2
(E) Derivative of f(x) = tan-1(x) on (-½,½)

If y = tan(x), then to make the
inverse, x = tan(y) and we can use
implicit differentiation to find dy/dx
d
x   d tan( y ) 
dx
dx
d
dy
1  tan( y ) 
dy
dx
dy
1  sec 2 ( y ) 
dx
1
dy

sec 2 ( y ) dx

But can we make a substitution for
sec2(y)??
sec 2 y  1  tan 2 y
sec 2 y  1  tan y   x  tan y
2
sec 2 y  1  x 2

d
1
tan 1 ( x) 
dx
sec 2 y
d
1
tan 1 ( x) 
dx
1 x2




(F) Summary of Trig Inverse Derivatives

The three derivatives of the inverse of the trig.
primary functions are:






d
1
1
sin ( x) 
dx
1 x2
d
1
1
cos ( x)  
dx
1 x2
d
1
1
tan ( x) 
2
dx
1 x
(G) Internet Links



Calculus I (Math 2413) - Derivatives Derivatives of Inverse Trig Functions from
Paul Dawkins
Visual Calculus - Derivatives of Inverse Trig
Functions
PinkMonkey.com Calculus Study Guide Section 4.11 Derivatives of Inverse
Trigonometric Function
(H) Examples

Problems and Solutions to Differentiation of
Inverse Trigonometric Functions from UC Davis

Differentiate y = sin-1(1-x2)
Differentiate f ( x)  x tan 1 x
Differentiate y = cos-1(sin(x))
If y = tan-1(x/y), find dy/dx



(I) Homework

Stewart, 1989, Chap 7.6, p339, Q1-4