Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometry Review (I) Introduction By convention, angles are measured from the initial line or the x-axis with respect to the origin. P If OP is rotated counter-clockwise positive angle from the x-axis, the angle so formed x O is positive. But if OP is rotated clockwise from the x-axis, the angle so formed is negative. O x negative angle P 1 (II) Degrees & Radians Angles are measured in degrees or radians. Given a circle with radius r, the angle subtended by an arc of length r measures 1 radian. r 1 c r rad 180 Care with calculator! Make sure your calculator is set to radians when you are making radian calculations. 2 r (III) Definition of trigonometric ratios y P(x, y) r y sin sin cos tan hyp adj hyp opp adj 1 sin x x opp 1 Note: y cosec r x r y x sec sin cos 1 sin 1 Do not write 1 1 cos , tan . cos 1 cos cot tan sin 3 Graph of y=sin x y sin x 1 0 90 180 270 360 1 4 Graph of y=cos x y cos x 1 0 90 180 270 360 1 5 Graph of y=tan x y tan x 0 90 180 270 360 6 From the above definitions, the signs of sin , cos & tan in different quadrants can be obtained. These are represented in the following diagram: sin +ve 2nd 3rd tan +ve All +ve 1st 4th cos +ve 7 (IV) Trigonometrical ratios of special angles What are special angles? 90 , 0, 180 , 270 , 360 30 , 45 , 60 Trigonometrical ratios of these angles are worth exploring 8 y sin x 1 0 2 1 sin 0 0 3 2 sin 2 0 sin 0 sin 0° 0 sin 1 2 sin 180° 0 sin 90° 1 2 sin 360° 0 3 sin 1 2 sin 270° 1 9 1 y cos x 0 2 1 cos 0° 1 cos 2 1 cos 360° 1 cos 1 cos 0 1 2 3 2 cos 180° 1 cos 0 2 cos 90° 0 3 cos 0 2 cos 270° 0 10 y tan x 0 tan 0 0 tan 0° 0 2 3 2 tan 0 tan 180° 0 2 tan 2 0 tan 360° 0 tan is undefined. 2 3 tan is undefined. 2 tan 90° is undefined tan 270° is undefined 11 Using the equilateral triangle (of side length 2 units) shown on the right, the following exact values can be found. 1 sin 30 sin 6 2 3 sin 60 sin 3 2 1 cos 60 cos 3 2 3 cos 30 cos 6 2 1 tan 30 tan 6 3 tan 60 tan 3 3 12 1 2 sin 45 sin 4 2 2 cos 45 cos 4 1 2 2 2 tan 45 tan 1 4 Complete the table. What do you observe? 13 14 Important properties: 2nd quadrant sin( ) sin 1st quadrant sin(2 ) sin cos( ) cos cos( 2 ) cos tan( ) tan tan(2 ) tan 3rd quadrant sin( ) sin cos( ) cos tan( ) tan 15 Important properties: 4th quadrant sin(2 ) sin cos( 2 ) cos tan(2 ) tan sin() sin cos( ) cos tan() tan In the diagram, is acute. However, these relationships are true for all sizes of . 16 Complementary angles Two angles that sum up to 90° or radians are called 2 complementary angles. E.g.: 30° & 60° are complementary angles. and are complementary angles. 2 Recall: 1 sin 30 cos 60 2 1 tan 30 cot 60 3 3 sin cos 3 6 2 tan 60 cot 30 3 17 We say that sine & cosine are complementary functions. Also, tangent & cotangent are complementary functions. sin 40 cos 50 E.g.: 3 cos sin 8 8 3 tan cot 8 8 cot 35 tan 55 18 E.g. 1: Simplify (i) sin 210 5 (ii) cos 3 2 (iii) tan(– ) 3 3 (iv) sin( ) 2 Solution: (a) sin 210 sin(180°+30) - sin 30 = 1 2 3rd quadrant 210° = 180°+30° 19 (b) cos 5 4th 1 cos(2 ) cos 3 3 2 3 5 3 quadrant 2 3 2 2 tan( ) tan( ) (c) tan 3 3 3 ( tan 3 ) 3 20 E.g. 2: If sin x = 0.6, cos x = 0.8, find (a) sin (3 x) (b) cos (4 x). Soln : sin (3 - x) cos (4 + x) sin (2 - x) cos (2 + x) sin ( - x) sin x 0.6 cos x 0.8 21 (V) Basic Angle The basic angle is defined to be the positive, acute angle between the line OP & its projection on the x-axis. For any general angle, there is a basic angle associated with it. Let denotes the basic angle. So 0 90 or 0 . 2 P O P O 180° or 22 (0 90 or 0 ) 2 O P – 180° or – O P 360° or 2 23 E.g.: 55 basic 55 (1st quadrant) (1st quadrant) P O 4 basic 4 24 E.g.: (2nd quadrant) 130 P basic 180 130 50 2 3 basic 3 O 180° or (2nd quadrant) 2 3 25 E.g.: (3rd quadrant) 200 basic 200 180 20 5 4 P (3rd quadrant) basic 5 4 O – 180° or – 4 26 E.g.: (4th quadrant) 300 basic 360 300 60 O 11 6 basic 2 6 P 360° or 2 (4th quadrant) 11 6 27 Principal Angle & Principal Range Example: sinθ = 0.5 2 2 Principal range Restricting y= sinθ inside the principal range makes it a one-one function, i.e. so that a unique θ= sin-1y exists 28 E.g. 3(a): Since sin ( 3 1 ) 2 2 3 sin ( ) 2 is positive, it is in the 1st or 2nd quadrant Basic angle, α = 4 3 Therefore 2 4 5 (inadmissib le ) 4 Hence, . Solve for θ if 0 or 3 2 4 or 3 4 3 4 29 E.g. 3(b): cos (2 250 ) 0.8 . Solve for θ if 0 180 0 Since cos (2 25 ) is negative, it is in the 2nd or 3rd quadrant Basic angle, α = 36.870o Therefore 2 25 180 36.870 or 2 25 180 36.870 59.1 or 95.9 Hence, 59.1 or 95.9 30 (VI) 3 Important Identities P(x, y) By Pythagoras’ Theorem, x2 y 2 r 2 2 2 x y 1 r r x y Since sin A and cos A , r r sin A2 cos A2 1 sin2 A cos2 A 1 O r y A x Note: sin 2 A (sin A)2 cos 2 A (cos A)2 31 (VI) 3 Important Identities (1) sin2 A + cos2 A 1 Dividing (1) throughout by cos2 A, tan 2 x = (tan x)2 (2) tan2 A +1 sec2 A 1 Dividing (1) throughout by sin2 A, (3) 1+ cot2 A csc2 A cos 2 A 1 cos A (sec A) 2 2 2 sec A 32 (VII) Important Formulae (1) Compound Angle Formulae sin( A B) sin A cos B cos A sin B sin( A B) sin A cos B cos A sin B cos( A B) cos A cos B sin A sin B cos( A B) cos A cos B sin A sin B tan A tan B tan( A B) 1 tan A tan B tan A tan B tan( A B) 1 tan A tan B 33 E.g. 4: It is given that tan A = 3. Find, without using calculator, (i) the exact value of tan , given that tan ( + A) = 5; (ii) the exact value of tan , given that sin ( + A) = 2 cos ( – A) Solution: (i) Given tan ( + A) 5 and tan A 3, tan tan A tan( A) 1 tan tan A tan 3 5 1 3 tan 5 15 tan tan 3 1 tan 8 34 Solution: (ii) Given sin ( + A) = 2 cos ( – A) & tan A 3, sin cos A + cos sin A = 2[ cos cos A + sin sin A ] (Divide by cos A on both sides) sin + cos tan A = 2(cos + sin tan A) sin + 3cos = 2(cos + 3sin ) 5sin = cos 1 tan = 5 35 (2) Double Angle Formulae (i) sin 2A = 2 sin A cos A Proof: sin 2 A (ii) cos 2A = cos2 A – sin2 A sin( A A) sin A cos A cos A sin A = 2 cos2 A – 1 = 1 – 2 sin2 A (iii) tan 2 A 2 tan A 2 1 tan A 2 sin Acos A cos 2 A cos( A A) cos 2 A sin 2 A 2 2 cos A (1 cos A) 2 cos 2 A 1 36 (3) Triple Angle Formulae: (i) cos 3A = 4 cos3 A – 3 cos A Proof: cos 3A = cos (2A + A) = cos 2A cos A – sin 2A sin A = ( 2cos2A 1)cos A – (2sin A cos A)sin A = 2cos3A cos A – 2cos A sin2A = 2cos3A cos A – 2cos A(1 cos2A) = 4cos3A 3cos A 37 (ii) sin 3A = 3 sin A – 4 sin3 A Proof: sin 3A = sin (2A + A) = sin 2A cos A + cos 2A sin A = (2sin A cos A )cos A + (1 – 2sin2A)sin A = 2sin A(1 – sin2A) + sin A – 2sin3A = 3sin A – 4sin3A 38 E.g. 5: Given sin2 A 16 & A is obtuse, find, 25 without using calculators, the values of (i) cos 4A (ii) sin ½A Solution: 16 2 Since sin A 25 4 sin A 5 4 But A is obtuse, sin A = 5 4 5 A 3 3 cos A 5 39 2 (i) cos 4 A 1 2 sin 2 A 1 2(2sin A cos A) 2 24 1 2 25 527 625 4 2 5 A 3 3 cos A 5 40 A (ii) cos A = 1 – 2sin2 ( ) 2 3 A 2 = 1 – 2sin ( ) 5 2 2 A 4 sin 2 5 A Since 90 A 180, 45 90. 2 A A st i.e. lies in the 1 quadrant. So sin 0 2 2 A 2 sin ( )= 2 5 41 E.g. 6: Prove the following identities: 4 2 (i) cos 4 A 8 cos A 8 cos A 1 Recall: cos 2A = cos2 A – sin2 A = 2 cos2 A – 1 Solution: (i) LHS = cos 4 A 2 cos 2 2 A 1 2 = 1 – 2 sin2 A 2 2(2 cos A 1) 1 4 2 2( 4 cos A 4 cos A 1) 1 4 2 8 cos A 8 cos A 1 = RHS 42 1 cos 2 A E.g. 6: Prove the following identities: (ii) tan A sin 2 A Solution: 1 cos 2 A (ii) LHS = sin 2 A 1 (1 2 sin 2 A) 2 sin A cos A 2 2 sin A 2 sin A cos A sin A cos A tan A = RHS 43 E.g. 6: Prove the following identities: (iii) 1 cos cosec cot , where 0 1 cos 2 Solution: 1 cos LHS 1 cos (1 cos )(1 cos ) (1 cos )(1 cos ) (1 cos )2 1 cos 2 (1 cos )2 sin 2 44 (1 cos )2 sin 2 1 cos sin 1 cos sin 1 cos sin sin ( Given 0 , 2 0 sin 1 and 0 cos 1.) cos ec cot RHS 45 E.g. 6: Prove the following identities: 3 3 cos cos 3 sin sin 3 (iv) 3 cos sin Solution: cos3 cos 3 sin 3 sin 3 LHS = cos sin cos 3 sin 3 2 2 cos sin cos sin sin 3 cos sin cos 3 1 sin cos 1 sin( 3 ) 1 sin 2 2 1 2 3 RHS 46 (5) The Factor Formulae (Sum or difference of similar trigo. functions) Recall compound angles formulae: sin( A B) sin A cos B cos A sin B …. sin( A B) sin A cos B cos A sin B …. cos( A B) cos A cos B sin A sin B …. cos( A B) cos A cos B sin A sin B …. + : sin( A B) sin( A B) 2 sin A cos B : sin( A B) sin( A B) 2 cos A sin B + : cos( A B) cos( A B) 2 cos A cos B : cos( A B) cos( A B) 2 sin A sin B47 By letting X = A + B and obtain the factor formulae: Y = A – B, we X Y X Y (1) sin X sin Y 2 sin cos 2 2 X Y X Y (2) sin X sin Y 2 cos sin 2 2 X Y X Y (3) cos X cos Y 2 cos cos 2 2 X Y X Y (4) cos X cos Y 2 sin sin 2 2 48 E.g. 8: Show that 2 (i)cos cos 3 cos 5 cos 3 (4 cos 1) Solution: (i) LHS Using cos X cos Y = cos + cos 3 + cos 5 = (cos 5 + cos ) + cos 3 = 2cos 3 cos 2 + cos 3 X Y X Y 2 cos cos 2 2 = cos 3 [2cos2 + 1] = cos 3 [ 2(2 cos2 – 1) + 1 ] = cos 3 (4 cos2 – 1) = RHS 49 sin A sin B A B E.g. 8: Show that (ii) cot cos A cos B 2 Soln: sin A sin B (ii) LHS = cos A cos B A B A B 2 sin cos 2 2 A B A B 2 sin sin 2 2 A B cos A B 2 cot = RHS A B 2 sin 50 2 E.g. 8: Show that (iii) sin + sin 3 + sin 5 + sin 7 = 16 sin cos2 cos2 2 Soln: (iii) LHS = sin + sin 3 + sin 5 + sin 7 = (sin 3 + sin ) + (sin 7 + sin 5 ) 4 2 12 2 2 sin cos 2 sin cos 2 2 2 2 = 2sin 2 cos + 2sin 6 cos = 2cos [ sin 6 + sin 2 ] 8 4 2 cos 2 sin cos 2 2 51 8 4 2 cos 2 sin cos 2 2 = 4 cos cos 2 sin 4 = 4 cos cos 2 [ 2 sin 2 cos 2 ] = 8 cos cos2 2 sin 2 = 8 cos cos2 2 ( 2 sin cos ) = 16 sin cos2 cos2 2 = RHS 52