Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometry Review
(I)
Introduction
By convention, angles are measured from the initial line
or the x-axis with respect to the origin.
P
If OP is rotated counter-clockwise
positive angle
from the x-axis, the angle so formed
x
O
is positive.
But if OP is rotated clockwise
from the x-axis, the angle so
formed is negative.
O
x
negative angle
P
1
(II)
Degrees & Radians
Angles are measured in degrees or radians.
Given a circle with radius r, the
angle subtended by an arc of length r
measures 1 radian.
r
1
c
r
 rad  180
Care with calculator! Make sure your
calculator is set to radians when you are making
radian calculations.
2
r
(III) Definition of trigonometric ratios
y
P(x, y)
r
y
sin 

sin  
cos  
tan  
hyp
adj
hyp
opp
adj

1
 sin 
x
x
opp
1
Note:



y
cosec  
r
x
r
y
x
sec  

sin 
cos 
1
sin 
1 Do not write
1
1
cos , tan  .
cos 
1
cos 
cot  

tan  sin  3
Graph of y=sin x
y  sin x
1
0
90
180
270
360
1
4
Graph of y=cos x
y  cos x
1
0
90
180
270
360
1
5
Graph of y=tan x
y  tan x
0
90
180
270
360
6
From the above definitions, the signs of sin , cos 
& tan  in different quadrants can be obtained.
These are represented in the following diagram:
sin +ve
2nd
3rd
tan +ve
All +ve
1st
4th
cos +ve
7
(IV) Trigonometrical ratios of special angles
What are special angles?




90
,
0,
180 , 270 , 360



30 , 45 , 60

Trigonometrical ratios of these angles are
worth exploring
8
y  sin x
1
0

2
1
sin 0  0

3
2
sin 2  0
sin   0

sin 0°  0 sin  1
2
sin 180°  0
sin 90°  1
2
sin 360°  0
3
sin  1
2
sin 270°  1
9
1
y  cos x
0

2

1
cos 0°  1
cos 2  1
cos 360°  1
cos   1
cos 0  1
2
3
2
cos 180°  1

cos  0
2
cos 90°  0
3
cos  0
2
cos 270°  0
10
y  tan x
0
tan 0  0
tan 0°  0

2

3
2
tan   0
tan 180°  0
2
tan 2  0
tan 360°  0

tan is undefined.
2
3
tan is undefined.
2
tan 90° is undefined
tan 270° is undefined
11
Using the equilateral triangle
(of side length 2 units) shown
on the right, the following exact
values can be found.
 1
sin 30  sin 
6 2

3

sin 60  sin 
3 2
 1

cos 60  cos 
3 2

3

cos 30  cos 
6 2

 1
tan 30  tan 
6
3


tan 60  tan  3
3

12

1
2
sin 45  sin


4
2
2

cos 45  cos

4

1
2

2
2

tan 45  tan  1
4

Complete the table. What do you observe?
13
14
Important properties:
2nd quadrant
sin(  )  sin 
1st quadrant
sin(2  )  sin 
cos(   )   cos 
cos( 2  )  cos 
tan(  )   tan 
tan(2  )  tan 
3rd quadrant
sin(  )   sin 
cos(   )   cos 
tan(  )  tan 
15
Important properties:
4th quadrant
sin(2  )   sin 
cos( 2  )  cos 
tan(2  )   tan 
sin()   sin 
cos( )  cos 
tan()   tan 
In the diagram,  is acute.
However, these
relationships are true for
all sizes of .
16
Complementary angles
Two angles that sum up to 90° or  radians are called
2
complementary angles.
E.g.: 30° & 60° are complementary angles.
 
 and     are complementary angles.
2

Recall:
1
sin 30  cos 60 
2


1
tan 30  cot 60 
3




3
sin  cos 
3
6 2


tan 60  cot 30  3
17
We say that sine & cosine are complementary
functions.
Also, tangent & cotangent are complementary
functions.


sin
40

cos
50
E.g.:
3

cos

sin
8
8

3
tan  cot
8
8


cot 35  tan 55
18
E.g. 1: Simplify
(i) sin 210
5
(ii) cos
3
2
(iii) tan(– )
3
3
(iv) sin(   )
2
Solution:
(a) sin 210  sin(180°+30)  - sin 30 = 
1
2
3rd quadrant
210° = 180°+30°
19
(b) cos
5
4th


1
 cos(2  )  cos 
3
3 2
3
5
3
quadrant
 2  3
 2 
2



  tan( )   tan(   )
(c) tan 
 3 
3
3



 ( tan
3
)
 3
20
E.g. 2:
If sin x = 0.6, cos x = 0.8, find
(a) sin (3  x)
(b) cos (4  x).
Soln :
sin (3 - x)
cos (4 + x)
 sin (2   - x)
 cos (2 + x)
 sin (  - x)
 sin x
 0.6
 cos x
 0.8
21
(V) Basic Angle
The basic angle is defined to be the positive, acute angle
between the line OP & its projection on the x-axis. For
any general angle, there is a basic angle associated with it.
Let  denotes the basic angle.
So 0    90 or 0     .


2
P

O

P


O
  180°  
or     
22
(0    90 or 0     )
2


O
P
   – 180°
or    – 

O

P
  360°   or
  2  
23
E.g.:

  55
basic     55


(1st quadrant)

(1st quadrant)
P

O

4
basic    

4
24
E.g.:
 (2nd quadrant)
  130


P

basic     180  130  50

2
3
basic      
3


O
  180°  
or     
(2nd quadrant)
2


3
25
E.g.:
 (3rd quadrant)
  200




basic     200  180  20

5
4

P
(3rd quadrant)
basic    
5
4

O
   – 180°
or    – 

4
26
E.g.:
 (4th quadrant)
  300



basic     360  300  60

O

11
6
basic     2 
6

P
  360° 
or   2  
(4th quadrant)
11


6
27
Principal Angle & Principal Range
Example: sinθ = 0.5


2

2
Principal range
Restricting y= sinθ inside the principal range makes it a
one-one function, i.e. so that a unique θ= sin-1y exists
28
E.g. 3(a):
Since
sin (
3
1
 ) 
2
2
3
sin (   )
2
is positive, it is in the 1st or 2nd quadrant

Basic angle, α =
4
3




Therefore 2
4

5
(inadmissib le )
4
Hence,  
. Solve for θ if 0    
or
3

   
2
4
or

3
4
3
4
29
E.g. 3(b): cos (2  250 )  0.8 . Solve for θ if 0    180
0
Since cos (2  25 ) is negative, it is in the 2nd or 3rd quadrant
Basic angle, α = 36.870o
Therefore 2  25  180  36.870
or
2  25  180  36.870
  59.1
or
  95.9
Hence,   59.1
or
95.9
30
(VI) 3 Important Identities
P(x, y)
By Pythagoras’ Theorem,
x2  y 2  r 2
2
2
 x  y
     1
r r
x
y
Since sin A 
and cos A  ,
r
r
sin A2  cos A2  1
sin2 A  cos2 A  1
O
r
y
A
x
Note:
sin 2 A  (sin A)2
cos 2 A  (cos A)2
31
(VI) 3 Important Identities
(1)
sin2 A + cos2 A  1
Dividing (1) throughout by cos2 A,
tan 2 x = (tan x)2
(2)
tan2 A +1  sec2 A
1
Dividing (1) throughout by sin2 A,
(3)
1+
cot2 A

csc2 A
cos 2 A
 1 


 cos A 
 (sec A)
2
2
2
 sec A
32
(VII) Important Formulae
(1)
Compound Angle Formulae
sin( A  B)  sin A cos B  cos A sin B
sin( A  B)  sin A cos B  cos A sin B
cos( A  B)  cos A cos B  sin A sin B
cos( A  B)  cos A cos B  sin A sin B
tan A  tan B
tan( A  B) 
1  tan A tan B
tan A  tan B
tan( A  B) 
1  tan A tan B
33
E.g. 4: It is given that tan A = 3. Find, without using calculator,
(i) the exact value of tan , given that tan ( + A) = 5;
(ii) the exact value of tan  , given that sin ( + A) = 2 cos ( – A)
Solution:
(i)
Given tan ( + A)  5 and tan A  3,
tan   tan A
tan(  A) 
1  tan  tan A
tan   3
5
1  3 tan 
5  15 tan   tan   3
1
 tan  
8
34
Solution:
(ii)
Given sin ( + A) = 2 cos ( – A) & tan A  3,
sin  cos A + cos  sin A = 2[ cos cos A + sin sin A ]
(Divide by cos A on both sides)
sin  + cos  tan A = 2(cos  + sin tan A)
sin  + 3cos  = 2(cos  + 3sin )
5sin  = cos 
1
tan  =
5
35
(2)
Double Angle Formulae
(i) sin 2A = 2 sin A cos A
Proof:
sin 2 A
(ii) cos 2A = cos2 A – sin2 A
 sin( A  A)
 sin A cos A  cos A sin A
= 2 cos2 A – 1
= 1 – 2 sin2 A
(iii) tan 2 A 
2 tan A
2
1  tan A
 2 sin Acos A
cos 2 A  cos( A  A)
 cos 2 A  sin 2 A
2
2
 cos A  (1  cos A)
 2 cos 2 A  1
36
(3)
Triple Angle Formulae:
(i) cos 3A = 4 cos3 A – 3 cos A
Proof:
cos 3A = cos (2A + A)
= cos 2A cos A – sin 2A sin A
= ( 2cos2A 1)cos A – (2sin A cos A)sin A
= 2cos3A  cos A – 2cos A sin2A
= 2cos3A  cos A – 2cos A(1  cos2A)
= 4cos3A  3cos A
37
(ii) sin 3A = 3 sin A – 4 sin3 A
Proof:
sin 3A = sin (2A + A)
= sin 2A cos A + cos 2A sin A
= (2sin A cos A )cos A + (1 – 2sin2A)sin A
= 2sin A(1 – sin2A) + sin A – 2sin3A
= 3sin A – 4sin3A
38
E.g. 5: Given sin2 A  16 & A is obtuse, find,
25
without using calculators, the values of
(i) cos 4A
(ii) sin ½A
Solution:
16
2
Since sin A 
25
4
sin A  
5
4
But A is obtuse, sin A =
5
4
5
A
3
3
cos A  
5
39
2
(i) cos 4 A  1  2 sin 2 A
 1  2(2sin A cos A)
2
24


 1  2  
 25 
527

625
4
2
5
A
3
3
cos A  
5
40
A
(ii) cos A = 1 – 2sin2 (
)
2
3
A
2
 = 1 – 2sin (
)
5
2
2 A 4
sin   
2 5
A
Since 90  A  180, 45   90.
2
A
A
st
i.e.
lies in the 1 quadrant. So sin  0
2
2
A
2
sin (
)=
2
5
41
E.g. 6: Prove the following identities:
4
2
(i)
cos 4 A  8 cos A  8 cos A  1
Recall:
cos 2A = cos2 A – sin2 A
= 2 cos2 A – 1
Solution:
(i) LHS = cos 4 A
 2 cos 2 2 A  1
2
= 1 – 2 sin2 A
2
 2(2 cos A  1)  1
4
2
 2( 4 cos A  4 cos A  1)  1
4
2
 8 cos A  8 cos A  1
= RHS
42
1  cos 2 A
E.g. 6: Prove the following identities: (ii)
 tan A
sin 2 A
Solution:
1 cos 2 A
(ii) LHS =
sin 2 A
1  (1  2 sin 2 A)

2 sin A cos A
2
2 sin A

2 sin A cos A
sin A

cos A
 tan A = RHS
43
E.g. 6: Prove the following identities:
(iii) 1  cos   cosec   cot  , where 0    
1  cos 
2
Solution:
1  cos 
LHS 
1  cos 
(1  cos  )(1  cos  )

(1  cos  )(1  cos  )


(1  cos  )2
1  cos 
2
(1  cos  )2
sin 
2
44

(1  cos  )2
sin 
2
1  cos 

sin 
1  cos 

sin 
1
cos 


sin  sin 
( Given 0   

,
2
0  sin   1 and 0  cos   1.)
 cos ec  cot 
 RHS
45
E.g. 6: Prove the following identities:
3
3
cos


cos
3

sin
  sin 3
(iv)

3
cos 
sin 
Solution:
cos3   cos 3 sin 3   sin 3
LHS =

cos 
sin 
cos 3
sin 3
2
2
 cos  
 sin  
cos 
sin 
sin 3 cos   sin  cos 3
 1
sin  cos 
 1
sin( 3   )
1 sin 2
2
 1  2  3  RHS
46
(5)
The Factor Formulae (Sum or difference of
similar trigo. functions)
Recall compound angles formulae:
sin( A  B)  sin A cos B  cos A sin B …. 
sin( A  B)  sin A cos B  cos A sin B …. 
cos( A  B)  cos A cos B  sin A sin B …. 
cos( A  B)  cos A cos B  sin A sin B …. 
 +  : sin( A  B)  sin( A  B)  2 sin A cos B
   : sin( A  B)  sin( A  B)  2 cos A sin B
 +  : cos( A  B)  cos( A  B)  2 cos A cos B
   : cos( A  B)  cos( A  B)  2 sin A sin B47
By letting X = A + B and
obtain the factor formulae:
Y = A – B, we
 X Y   X Y 
(1) sin X  sin Y  2 sin
 cos

 2   2 
 X Y   X Y 
(2) sin X  sin Y  2 cos
 sin

 2   2 
 X Y   X Y 
(3) cos X  cos Y  2 cos
 cos

 2   2 
 X Y   X Y 
(4) cos X  cos Y  2 sin
 sin

 2   2 48
E.g. 8: Show that
2
(i)cos   cos 3  cos 5  cos 3 (4 cos   1)
Solution:
(i) LHS
Using cos X  cos Y
= cos  + cos 3 + cos 5
= (cos 5 + cos ) + cos 3
= 2cos 3 cos 2 + cos 3
X Y   X Y 

 2 cos
 cos

 2   2 
= cos 3 [2cos2 + 1]
= cos 3 [ 2(2 cos2 – 1) + 1 ]
= cos 3 (4 cos2 – 1) = RHS
49
sin A  sin B
A B

E.g. 8: Show that (ii)
  cot 

cos A  cos B
 2 
Soln:
sin A  sin B
(ii) LHS =
cos A  cos B
 A B  A B
2 sin
 cos

2   2 


 A B  A B
 2 sin
 sin

 2   2 
A B

cos

A B
2 



  cot 
= RHS

A B

2


sin

50
 2 
E.g. 8: Show that
(iii) sin  + sin 3 + sin 5 + sin 7 = 16 sin cos2 cos2 2
Soln:
(iii) LHS = sin  + sin 3 + sin 5 + sin 7
= (sin 3 + sin  ) + (sin 7 + sin 5 )
4
2
12
2
 2 sin cos  2 sin
cos
2
2
2
2
= 2sin 2 cos + 2sin 6 cos
= 2cos [ sin 6 + sin 2 ]

8
4 
 2 cos   2 sin cos 
2
2

51

8
4 
 2 cos   2 sin cos 
2
2

= 4 cos cos 2 sin 4
= 4 cos cos 2 [ 2 sin 2 cos 2 ]
= 8 cos cos2 2 sin 2
= 8 cos cos2 2 ( 2 sin cos )
= 16 sin cos2 cos2 2
= RHS
52
Related documents