Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Presents Let’s Investigate The Tangent ratio The Sine ratio The Cosine ratio The three ratios Extension Let’s Investigate! Trigonometry means “triangle” and “measurement”. We will be using right-angled triangles. Opposite x° Adjacent Mathemagic! Opposite 30° Adjacent Opposite = 0.6 Adjacent Try another! Opposite 45° Adjacent Opposite = 1 Adjacent For an angle of 30°, Opposite Adjacent Opposite = 0.6 Adjacent is called the tangent of an angle. We write tan 30° = 0.6 The ancient Greeks discovered this and repeated this for all possible angles. Tan 25° 0.466 Tan 26° 0.488 Tan 27° 0.510 Tan 28° 0.532 Tan 29° 0.554 Tan 30° 0.577 Tan 31° 0.601 Tan 32° 0.625 Tan 33° 0.649 Tan 34° 0.675 Tan 30° = 0.577 Accurate to 3 decimal places! Now-a-days we can use calculators instead of tables to find the Tan of an angle. On your calculator press Followed by 30, and press Tan = Notice that your calculator is incredibly accurate!! Accurate to 9 decimal places! What’s the point of all this??? Don’t worry, you’re about to find out! How high is the tower? h 60° 12 m Copy this! Opposite h 60° 12 m Adjacent Opp Tan x° = Adj h Tan 60° = 12 Copy this! Change side, change sign! 12 x Tan 60° = h h = 12 x Tan 60° = 20.8m (1 d.p.) So the tower’s 20.8 m high! ? 20.8m Don’t worry, you’ll be trying plenty of examples!! The Tangent Ratio Opp Tan x° = Adj Opposite x° Adjacent Example Op c p 65° 8m Opp Tan x° = Adj Tan 65° = c 8 Change side, change sign! 8 x Tan 65° = c c = 8 x Tan 65° = 17.2m (1 d.p.) Now try Exercise 1. (HSDU Support Materials) Using Tan to calculate angles Example Op p 18m x° 12m SOH CAH TOA Opp Tan x° = Adj Tan x° = 18 12 Tan x° = 1.5 ? Tan x° = 1.5 How do we find x°? We need to use Tan ⁻¹on the calculator. Tan ⁻¹is written above To get this press Tan ⁻¹ Tan 2nd Followed by Tan Tan x° = 1.5 Press 2nd Tan ⁻¹ Tan Enter 1.5 = x = Tan ⁻¹1.5 = 56.3° (1 d.p.) Now try Exercise 2. (HSDU Support Materials) The Sine Ratio Sin x° = Opp Hyp Opposite x° h Op p Example 11cm 34° Opp Sin x° = Hyp h Sin 34° = 11 Change side, change sign! 11 x Sin 34° = h h = 11 x Sin 34° = 6.2cm (1 d.p.) Now try Exercise 3. (HSDU Support Materials) Using Sin to calculate angles 6m Op p Example 9m SOH CAH TOA x° Opp Sin x° = Hyp 6 Sin x° = 9 Sin x° = 0.667 (3 d.p.) ? Sin x° =0.667 (3 d.p.) How do we find x°? We need to use Sin ⁻¹on the calculator. Sin ⁻¹is written above To get this press Sin ⁻¹ Sin 2nd Followed by Sin Sin x° = 0.667 (3 d.p.) Press 2nd Sin ⁻¹ Sin Enter 0.667 = x = Sin ⁻¹0.667 = 41.8° (1 d.p.) Now try Exercise 4. (HSDU Support Materials) The Cosine Ratio Cos x° = Adj Hyp x° Adjacent b 40° Example Op 35mm Adj Cos x° = Hyp b Cos 40° = 35 Change side, change sign! 35 x Cos 40° = b b = 35 x Cos 40°= 26.8mm (1 d.p.) Now try Exercise 5. (HSDU Support Materials) Using Cos to calculate angles 34cm x° Example Op SOH CAH TOA 45cm Adj Cos x° = Hyp 34 Cos x° = 45 Cos x° = 0.756 (3 d.p.) x = Cos ⁻¹0.756 =40.9° (1 d.p.) Now try Exercise 6. (HSDU Support Materials) Tangent Sine Cosine The Three Ratios Sine Sine Tangent Cosine Cosine Sine The Ratios Sin x° = Opp Hyp Cos x° = Adj Hyp Tan x° = Opp Adj The Ratios Sin x° = Opp Hyp Cos x° = Adj Hyp Copy this! Tan x° = Opp Adj O S H A C H O T A SOH CAH TOA Tan 27° Sin 36° Cos 20° Mixed Examples Sin 60° Sin 30° Tan 40° Cos 12° Cos 79° Sin 35° h Op p Example 1 15m SOH CAH TOA 40° Opp Sin x° = Hyp h Sin 40° = 15 Change side, change sign! 15 x Sin 40° = h h = 15 x Sin 40° = 9.6m (1 d.p.) b 35° Example 2 Op SOH CAH TOA 23cm Adj Cos x° = Hyp b Cos 35° = 23 Change side, change sign! 23 x Cos 35° = b b = 23 x Cos 35° = 18.8cm (1 d.p.) Example 3 Op c p 60° 15m SOH CAH TOA Opp Tan x° = Adj c Tan 60° = 15 Change side, change sign! 15 x Tan 60° = c c = 15 x Tan 60° = 26.0m (1 d.p.) Now try Exercise 7. (HSDU Support Materials) Extension 23cm Op p Example 1 b SOH CAH TOA 30° Opp Sin x° = Hyp 23 Sin 30° = b ? 23 Sin 30° = b Change sides, change signs! 23 b= Sin 30° (This means b = 23 ÷ Sin 30º) b= 46 cm 7m 50° Example 2 Op SOH CAH TOA p Adj Cos x° = Hyp 7 Cos 50° = Change sides, change signs! p 7 p= Cos 50° p= 10.9m (1 d.p.) Example 3 Op 9m p 55° d SOH CAH TOA Opp Tan x° = Adj 9 Tan 55° = d 9 d= Tan 55° Change sides, change signs! d= 6.3m (1 d.p.) © K Hughes 2001