* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download document
Survey
Document related concepts
Transcript
Telescope Optical Performance Breakout Session M.Lampton UCBerkeley Space Sciences Lab 10 July 2002 1 Optical Performance: Overview Review Image quality Diffracted Starlight Stray (scattered) Light Acquisition Plan Materials, manufacturing etc will be discussed in Pankow’s talk 2 Review Telescope is a three-mirror anastigmat 2.0 meter aperture 1.37 square degree field Lightweight primary mirror Low-expansion materials Optics kept near 290K Transverse rear axis Side Gigacam location passive detector cooling combines Si & HgCdTe detectors Spectrometers share Gigacam focal plane Minimum moving parts in payload shutter for detector readouts 3 Image Quality 1 TMA62/TMA63 configuration Airy-disk zero at one micron wavelength 26 microns diam=0.244arcsec 4 Image Quality 2 PSF study TMA63 Contains ideal optimum surface aberrations, no mfg errors, no misalignments sinTheta 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 One Dim One Dim microns microns microns Rfinal radialRMS tangRMS 129122 3.32 1.6 150838 3.33 1.6 172649 3.18 1.59 194565 2.83 1.51 216600 2.28 1.37 238769 1.57 1.35 261086 1.18 1.89 283565 2.09 3.23 RSS, 2D= Two Dim Two Dim microns milliArcsec total RSS total RSS 3.69 35.09 3.69 35.17 3.56 33.85 3.21 30.54 2.66 25.32 2.07 19.71 2.23 21.21 3.85 36.63 3.12 29.69 One Dim milliArcsec FWHM 58.29 58.44 56.23 50.74 42.07 32.75 35.24 60.85 49.33 5 Image Quality 2 continued • Although the range of radii in use within the focal plane is the nominal design range 129 to 283mm, the extremes are poorly populated with pixels 6 Image Quality: Distortion TMA62 Distortion -- M.Lampton 07 Feb 2002 sinTheta 0.006 0.007 0.008 0.009 0.01 0.011 0.012 0.013 R microns LinModel 129122 150838 172650 194567 216600 238769 261085 283563 129960 151620 173280 194940 216600 238260 259920 281580 diff, microns -838 -782 -630 -373 0 509 1165 1983 7 Image Quality 3 • Science SNR drives Strehl ratio — Imperfections in delivered wavefront cause central PSF intensity to be less than ideal diffraction-limited PSF — This ratio is the “Strehl Ratio” • • 1 0.8 0.6 0.4 0.2 0 -0.2 0 5 10 15 Systems Engineer manages WFE budget — — — — — — — — • 1.2 geometrical aberrations manufacturing figure errors & cost alignment errors in 1-g environment gravity release in mirrors & structure launch induced shifts & distortions on-orbit thermal distortion ageing & creep of metering structure how many on-orbit adjustments? Primary mirror dominates WFE budget because it is the most expensive to figure. Non-optical factors: — Attitude control system stability — Transparency & optical depth in silicon Marechal’s equation relates WFE and Strehl Strehl exp[ (2 WFE / ) 2 ] WFE ln( 1 / Strehl ) 2 rms WFE/lam Strehl 0 1 0.018 0.99 0.036 0.95 0.07 0.82 0.1 0.67 0.14 0.46 0.2 0.21 Percent Energy in... Airy disk Rings 0.84 0.16 0.83 0.17 0.80 0.2 0.68 0.32 0.55 0.45 0.40 0.6 0.20 8 0.8 Image Quality 4 • • For diffraction-limited optics, rmsWFE or Strehl @0.633um is usually the governing procurement specification SNAP exposure-time-critical science is at wavelengths > 0.63um Science team needs to be aware of cost/schedule/quality trades Strehl for rmsWFE= 20, 40, 60 nm 1.2 1 Strehl • 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 wavelength, microns 9 Image Quality 5 Strehl ratio vs RMS WFE black=0.633um red=0.825um yellow=1.0um 1.2 1 0.8 0.6 0.4 0.2 0 0 0.02 0.04 0.06 0.08 0.1 0.12 RMS WFE, microns 10 Image Quality • • • • • 6 Example: overall telescope 43 nm RMS WFE — gives Strehl= 0.93 at 1000 nm — gives Strehl=0.90 at 830 nm — gives Strehl=0.83 at 633 nm Example: overall telescope 50 nm RMS WFE — gives Strehl=0.91 at 1000 nm — gives Strehl=0.87 at 830 nm — gives Strehl=0.77 at 633 nm WFE to be budgeted among pri, sec, flat, and tertiary mirrors — detailed breakdown to be determined How sensitive are cost & schedule to our WFE specification? Encircled Energy specification needs to be defined — central obstruction 40% radius, 16% area — with this obstruction alone, EE=50% at 0.088arcsec diam @633nm or EE=80% at 0.23arcsec diam @633nm — Budget lower EE for aberrations, spider, figuring, thermal, gravity.. 11 Image Quality 7 • • • • • Strehl vs Aperture Trade — Strehl (image quality) costs time & money — Aperture (image quantity) costs time & money — Central obscuration trades off with stray light — NIR (not visible) is where SNR demands the most observing time — Is 77% Strehl and 2.0 meters aperture the right mix? Encircled Energy Specification — High spatial frequency figure errors lose photons — Low spatial frequency figure errors broaden the encircled energy — Steeper EE curves demand absence of LSF amplitudes — Is 70% EE at 0.1 arcsecond the right target? Quantitative answers require modelling Our sim team can deal with image quality trades We expect to resolve these issues during R&D phase 12 Tolerance to Primary curvature TMA62/63 IMAGE BLUR SENSITIVITY TO PRIMARY CURVATURE row in BOLD is the nominal design Primary curvature meter^-1 0.203740 0.203745 0.203750 0.203755 0.203759 0.203760 0.203765 0.203770 0.203775 0.203780 Primary radius meters 4.908216 4.908096 4.907975 4.907855 4.907759 4.907735 4.907614 4.907494 4.907373 4.907253 UNADJUSTED SECY zPosition rmsBlur meters microns -2.000000 414 -2.000000 303 -2.000000 193 -2.000000 83 -2.000000 2 -2.000000 23 -2.000000 143 -2.000000 260 -2.000000 366 -2.000000 478 ADJUSTED SECY zPosition rmsBlur meters microns -2.000217 10 -2.000158 8 -2.000100 5 -2.000042 3 -2.000000 2 -1.999988 2 -1.999925 3 -1.999867 5 -1.999808 7 -1.999750 10 13 Tolerance to misplaced secondary mirror Example assumes 3 micron growth in image blur TMA56 Sensitivity Coefs SECONDARY MIR X Y Z Pitch Tilt TOL,RMS 3 microns disp,um shift,um rms,um disp(TOL),um 10 -62 2 15 20 -125 4 15 30 -187 6 15 10 62 2 15 20 124 4 15 30 186 6 15 10 0 16 2 20 0 32 2 30 0 47 2 disp,urad shift,um rms,um disp(TOL),urad 16 134 3 16 32 268 5 19 16 134 3 16 32 268 5 19 48 401 7 21 14 Tolerance to misplaced tertiary mirror Example assumes 3 micron growth in image blur TERTIARY MIR X Y Z Pitch Tilt disp(TOL),um disp,um shift,um rms,um 150 2 -252 100 200 3 -505 200 180 5 -757 300 150 2 252 100 150 4 504 200 14 21 0 100 15 40 0 200 disp(TOL),urad disp,urad shift,um rms,um 80 6 701 160 87 11 1403 320 80 6 698 160 87 11 1396 320 15 Diffracted Starlight 1 3X 4cm Ø2m Ø45cm Six 2cm thick Tangential Vanes Ø2m Ø45cm Four 4cm Thick Radial Vanes Ø2m Ø45cm Three 4cm Thick Radial Vanes 3X 4cm 6X 2cm 6X 2cm Ø2m Ø45cm Eight 2cm thick Tangential Vanes 16 Diffracted Starlight 2 (Four vanes) log10(I), scaled to unit input Irradiance at 633nm 1 0 -1 -2 -3 -4 -5 -3 -2 -1 2000mm Aperture, 39.06mm vanes 0 Angle from star, Arcsec 1 2 3 log10 focal plane irradiance 17 Diffracted Starlight 3 (Eight vanes) log10(I), scaled to unit input Irradiance at 633nm 0 -2 -4 -6 -3 -2 -1 2000mm Aperture, 19.53mm vanes 0 Angle from star, Arcsec 1 2 3 log10 focal plane irradiance 18 Circular 2meter aperture 5 x 5 arcsec 19 Circular 2meter aperture 0.7 meter central obscuration 20 Circular 2m aperture Three radial legs, 50mm x 1 meter 21 Circular 2m aperture central 0.7m obscuration Three legs, 50mm x 1meter 22 Diffracted Starlight 8 23 Diffracted Starlight 9 Assuming a 2.0 meter tele scope, 1m, and a 2m 5cm obstructio n : The Airy disk irradiance ratio vs angle envelope is I( ) I 0 10-4 -3 with in arcseconds . The spike irradiance ratio vs angle envelope is I( ) I 0 10-3 -2 with in arcseconds . The central intensity I 0 3E10 10 0.4V ph/sec.pix el. m The Zodi intensity is 1 photon/sec .pixel. m Airy disk area above Zodi 2 7E4 10-0.267V 12 - spike area above Zodi 12 w 6.6E4 w 10-0.2V 24 Diffracted Starlight 10 STAR NUMBERS AND STARLIGHT; Diffracted light above Zodi V mag stars/sqdeg 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0.00008 0.00031 0.0014 0.0048 0.018 0.05 0.141 0.4 1.1 2.9 8.7 21.9 58.9 141 339 813 1738 3467 6918 10471 17783 Nstars/sky per mag 3 12 56 192 720 2000 5640 16000 44000 116000 348000 876000 2356000 5640000 13560000 32520000 69520000 138680000 276720000 418840000 711320000 Airy area/star Total Airy area sqarcsec fraction of sky 12 spikes * 0.25 arcsec * spikeLength 12 spike area/star Total 12-spike sq arcsec fraction of sky 70000.00 37852.80 20469.07 11068.74 5985.47 3236.67 1750.24 946.45 511.80 276.76 149.66 80.93 43.76 23.66 12.80 6.92 3.74 2.02 1.09 0.59 0.32 4.2336E-07 8.87118E-07 2.16645E-06 4.01662E-06 8.14502E-06 1.22346E-05 1.86569E-05 2.86207E-05 4.25611E-05 6.06761E-05 9.84326E-05 0.000133987 0.000194866 0.000252255 0.000327959 0.000425315 0.000491665 0.000530364 0.000572269 0.00046839 0.000430155 16500.00 10410.80 6568.77 4144.61 2615.07 1650.00 1041.08 656.88 414.46 261.51 165.00 104.11 65.69 41.45 26.15 16.50 10.41 6.57 4.14 2.62 1.65 9.9792E-08 2.43987E-07 6.95238E-07 1.504E-06 3.55859E-06 0.000006237 1.10975E-05 1.9864E-05 3.44666E-05 5.73329E-05 0.000108524 0.000172365 0.000292497 0.000441799 0.000670202 0.001014136 0.001367904 0.001721708 0.002167636 0.002070112 0.002218251 Airy Fraction= 0.004104045 12-spike fraction= 25 0.012380234 Diffracted Starlight 11 • • • • • • • Extensive work with sim team Modelling PSF for SNR, exposure times... Modelling wings of diffraction pattern Algorithms for photometry in presence of diffraction Determination of effective SNR Inputs from our known sky, down to V=19 (SDSS) How well can these effect be modelled? 26 Stray Light • • • • • • • • • 1 Guiding principle: keep total stray light FAR BELOW natural Zodi R.O.M. assessment gives... — Natural Zodi (G.Aldering) = 1 photon/pixel/sec/micron — Starlight+Zodi scattered off primary mirror = 0.002 — Starlight+Zodi scattered off support spider < 0.001 — Sunlight scattered off forward outer baffle edge = 2E-5 — Earthlight scattered off forward outer baffle inner surface = 0.02 — Total stray = 0.02 photon/pixel/sec/micron ISAL conclusion: “manageable” Long outer baffle is clearly preferred — limit is launch fairing and S/C size ASAP software in place ASAP training begun Preliminary telescope ASAP models being built ASAP illumination environment models not yet started Our intension is to track hardware & ops changes as they occur, 27 allowing a “system engineering management” of stray light. Stray Light 2 28 Stray Light 3: Reverse Trace 29 30 Optical Performance: Throughput • Protected silver —provides highest NIR reflectance currently available —durability is an issue: 3 years at sea level prior to launch —this is our baseline —new developments at LLNL: Thomas & Wolfe process • Protected aluminum —highly durable coating —slight reflectance notch at 0.8 microns wavelength —after four reflections, amounts to 30-40% loss at 0.8 um —prefer to retain high reflectance at 0.8 microns —not our first choice 31 Telescope Acquisition Plan • • • • Potential Vendors Identified — Ball Aerospace Systems Division (Boulder) — Boeing-SVS (Albuquerque/Boulder) — Brashear LP (Pittsburgh) — Composite Optics Inc (San Diego) — Corning Glass Works (Corning NY) — Eastman Kodak (Rochester) — Goodrich (Danbury) — Lockheed-Martin Missiles & Space Co (Sunnyvale) — SAGEM/REOSC (Paris) These vendors have been briefed on SNAP mission Each has responded to our Request for Information Identify a route (materials, fabrication, test, integration, test) — Milestones with appropriate incentives — Visibility into contractor(s) activities 32 Test Plans • Individual Mirror Testing • Assembly into metering structure • Assembled optical testing — interferometric — reflex testing against reference flat • Integration with focal plane assembly • End-to-end testing — in air at room temperature — in vacuum or dry N2 with cold focal plane — reflex testing against reference flat 33 Reflex Test Configuration 34 Telescope: Summary • • Pre-R&D — converted science drivers into telescope requirements — reviewed existing optical telescope concepts — developed annular-field TMA configuration — preliminary materials assessment — begun to explore vendor capabilities — started a budget for image quality R&D Phase — engineering trade studies and “budgets” — manufacturing process risk assessments — test plans and associated cost/risk trades • facilities; equipment — prepare the acquisition plan — performance specifications & tolerance analysis — create draft ICDs — develop preliminary cost & schedule ranges 35