* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download talk
Survey
Document related concepts
Transcript
Imaging chambers in medicine, biology and astrophysics • F.A.F. Fraga • LIP - Coimbra, CFRM and Departamento de Física da Universidade de Coimbra, 3004-516 Coimbra, Portugal Outline • • • • Imaging gas scintillators The GEM - an active scintillator CCDs Apllications – Quality control – Imaging chamber • Alpha tracking • Neutrons – Radiography – Therapeutic beam monitoring • Other projects – Neutron spectrometer – Thermal neutron imaging – Pollarimeter • Conclusions Introduction • 2D imaging detectors • Advantages of optical readout – Electronics decoupled from detection media – Insensitive to electronic noise or RF pickup signals – Real multi hit capability with true pixel readouts complex events – Large areas without dead spaces - optical systems (lenses, mirrors, fibers and tapers) New developments in optical imaging detectors, A. Breskin, NIM A498(1989)457c-468c Gaseous avalanche chambers with optical readout • 2D gas scintillators with optical readout by PMs or intensified CCDs • Initially used with wires and pure gases – Xe, Kr, Ar and He with the addition of N2 - UVscintillation, innefficient and expensive optics, optical wavelenght shifters • Improvements – continuous amplifying structures (PPAC, grids) – gas mixtures scintillating at > 250 nm The gas proportional scintillation chamber, A.J.P. Policarpo, Space Sci. Instr. 3(1977)77 A few examples • High pressure xenon (up to 20 bar) waveshifter fibers – A. Parsons, B. Sadoulet, S. Weiss, T. Edberg, J. Wilkerson, IEEE TNS 36(1989)931-935 • Multistep, low pressure and high gas gain (light gap ~ 9 mm, light yield up to 3 ph./el.) – A. Breskin, R. Chechik and D. Sauvage NIM A286(1990)251-256 • PPACs at atmospheric preassure light gap ~ 1.5 mm, TEA, TMAE, Penning effect, higher light to charge ratio – G. Charpak, W. Dominik, J.P. Fabre, J. Gaudaen, F. Sauli and M. Suzuki, NIM A269(1988)142-148 – V. Peskov, G. Charpak, W. Dominik and F. Sauli NIM A227(1989)547-556 • TPC with optical readout (multistep, low pressure TEA) – U. Titt, A. Breskin, R. Chechik, V. Dangendorf , H. Schmidt-Böcking and H. Schuhmacher, NIM A416 (1998)85 • Optical imaging with capillary plate, argon-TMA and intensified CCD. – T. Masuda, H. Sakurai, Y. Inoue, S. Gunji and K. Asamura, IEEE TNS 49(2002)553-558 • Some limiting features • Low number of emitted photons – image intensifiers - expensive, degrade image resolution, limited size • Large scintillation gaps – degrade position resolution, diffusion, optical depth of field • Technically complicated and expensive – low pressure, high temperature, capillary plates Luminiscence in microstrips • 1993 A. Oed and P. Geltenbort reported high luminosity from pure gas mixtures • 1998 We used scintillation to perform quality control of microstrips – CCD with Ar2% Xe Microstrip operation in noble gases: an active scintillator, P. Geltenbort and A. Oed, Proceedings of the Workshop on Progress in Gaseous Microstrip Proportional Chambers, Grenoble, 21-23 June 1993 Towards a method for quality control of microstructures for gaseous detectors based on scintillation light, F.A.F. Fraga, M.M. Fraga, R. Ferreira Marques, J.R. Gonçalo, E. Antunes, C. Bueno and A.J.P.L Policarpo The GEM should be a good candidate for a gas scintillator See http://gdd.web.cern.ch/GDD/ F.Sauli. NIMA386(1997)351 Electric field simulation GEM 80/70 GEM 60/50 GEM 45/35 60 50 E (kV/cm) 40 30 20 10 0 -100 -50 0 50 100 z (micron) • Magnitude of the electric field along the center of the GEM channel for equal measured gain in GEMs of different metal hole size • Thin gap, high gain, no blurring Study of luminiscence of GEMs X-ray Vd Drift Grid Ed 5mm GEM1 Et 2mm GEM2 Induction Grid • Both charge and light signals were digitized Ei 2mm PMT P.A Camberra 2005 P.A Camberra 2006 Digitizer Tektronix TDS 7104 V1 V2 V3 V4 Typical light signal shape using He40%CF4 • The light signal risetime at the preamplifier output is 39ns Average rise time of the light and charge signals versus induction field, Ei 80 Double GEM, He+40%CF 4 (1bar), Ed=0.5kV/cm, Et=2kV/cm, Effective Gain ~3.1x10 60 Charge Light Rise Time (ns) • 55Fe • Ed=0.5kV/cm • Et= Ei = 2kV/cm • double GEM gain ~ 3.1x103. 3 40 20 0 0 1 2 3 Ei (kV/cm) 4 5 Energy resolution 250 Double GEM, He+40%CF4 -1bar Ed=0.5kV/cm, Et=Ei=2kV/cm, Effective Gain ~ 9x104 55 200 Fe (5.9keV) Charge (R~20%) Light (R~20%) #Counts 150 100 50 0 0 100 200 Channel 300 400 CCD characteristics • • • • • CCD camera: QUANTIX 1400 (PHOTOMETRICS) Number of pixels 1317 x 1035 (6.8 x 6.8 mm pixels) Read noise (1 MP/s) 18 e RMS Dark current 0.03 e/p/s (-25ºC, Peltier cooled) Binning - 2x2 up to 7x7 – less position resolution but lower noise! Nikon 50mm f1.8 photographic lens with C mount adapter Qunatum efficiency (%) • 60 50 40 30 20 10 0 300 400 500 600 700 800 900 1000 Wavelength (nm) • Quantum efficiency of the Quantix 1400 camera versus wavelengh 1100 What is a CCD? • Pixel type silicon light sensitive detector • High quantum efficiency - up to 90% but no gain • Integrating type device - exposure time from ms to minutes • Limited range • Low noise - cooling can be needed • Pixel sizes up to 30 x 30 m • High number of pixels up to 4000 x 4000 • Analog-digital serial readout - slow Why using CCDs for the readout of radiation detectors? • High resolution - up to 4000x4000 pixels • Large area detection using lenses or mirrors • Can be placed away of detection media • Cheap cost • Electrical noise free • Simple interface with computers CCD readout of GEM scintillation GEM Radiation source Glass window -Vdrift Front electrode Minimum focusing distance~30cm Back electrode First images of GEM scintillation • Scintillation image of a GEM foil. The holes of the GEM are seen as emitting dots in the small zone which is shown magnified • Ar-2%Xe Gas study and optimization Quality control light/current (a.u.) 100 50 0 250 Ar(1) Ar(3) Ar(2) Ar2.5%Co2 Ar5%CO2 Ar5%CO2 Ar10%CO2 Ar10%CO2 Ar10%CO2 300 350 400 450 Vgem •Increasing the CO2 amount lowers the light emission •A small amount of quencher enhances stability of light emission •Ar-5%CO2 was found to be the optimum mixture for q.c. •Light yield ~ 0.03 photons/secondary electron Quality control – scintillation is sensitive to electric field configuration – checks GEMs gain uniformity – identification of local defects – finds optically unseen deffects a) b) GEM characteristics • Electrical field can have higher values than in PPACs • Cascaded GEMs – Micro-Pattern Gaseous Detectors, by F. Sauli and A. Sharma, Ann. Rev.Nucl.Part.Sci 49(1999)341 • High gain up to 4 stages, gain up to 105 - 106 – J. Va´vra, A. Sharma, NIM A Vienna 2001 – A. Breskin, PSD6 • Free from ion feedback – Study of ion feedback in multi-GEM structures, A. Bondar, A. Buzulutskov, L. Shekhtman, A. Vasiljev, 2002, submitted to NIM A • Photon screening, free from photon feedback – R. Chechik et al. NIMA419(1998)423 • Large areas (~30 x 30cm) – Gem detectors for COMPASS, by B. Ketzer, S. Bachmann, M. Capeáns, M. Deutel, J. Friedrich, S. Kappler, I. Konorov, A. Placci, K. Reisinger, L. Ropelewski, L. Shekhtman, F. Sauli. IEEEE NSS Lyon, 2000.. • No need to collect the electrons on the induction electrode avoiding breakdown in the last stage Tracking chamber • Sensitive volume ~250 cm3 • Track lenghts up to 8cm • Cascaded standard double GEM (10x10cm) 30 cm Tracking chamber views Data on Ar CF4 gain and relative luminosity EC=0; Ar 5%CO2 shown for comparison 1000 30 Light Yield (a.u./e) Gain Ar+5%CO2 100 Ar+5%CO2 Ar+5%CF4 Ar+80%CF4 100%CF4 10 25 Ar+5%CF4 20 Ar+80%CF4 100%CF4 15 10 5 0 300 350 400 450 Vgem (Volt) 500 550 600 300 350 400 450 500 550 600 Vgem (Volt) • Ar CF4 has greater light emission than Ar CO2 • Good light emission for higher percentage of quencher • Ar-5% CF4 light yield 0.57 photon/secondary electron (>400 nm) • Performance of a tracking device based on the GEM scintillation, F. A. F. Fraga, S. T. G. Fetal, L. M. S. Margato, R. Ferreira Marques and A. J. P. L. Policarpo, Presented at the IEEE 2000 NSS 3 0,7 Ar + 5% CF4 0,6 2 G=40 0,5 Inorm (a.u.) 0 3 500 2 Ar + 10% CF4 1 550 600 650 700 750 800 850 Nph/e- 1 0,4 0,3 5% CF4 10% CF4 67% CF4 0,2 0,1 G=90 1 0 3 10 Gain 500 550 600 650 700 750 800 850 Nº of photons emitted, between 400 and 1000 nm, per secondary 1 G=40 electron, as a function of the 0 effective gain, in Ar-CF4 mixtures. 500 550 600 650 700 750 800 850 (nm) (Measurements performed with Visible and NIR emission spectra of Ar- the photodiode). CF4 mixtures, normalized to the light intensity at 620 nm. 2 Ar + 67% CF4 The GEM scintillation in He-CF4, Ar-CF4, Ar-TEA and Xe-TEA mixtures, M. M. Fraga, F. A. F. Fraga, S. T. G. Fetal, L. M. S. Margato, R. Ferreira Marques and A. J. P. L. Policarpo, presented at Beaune 2002 conference, submitted to NIM A Images of alpha tracks taken using the tracking chamber with Ar -5%CF4 • • VGEM1=VGEM2=400V (Gain~140), ET=5.45KV/cm, EC=5.86KV/cm, Texp.=10ms. (a,b)VGEM1=VGEM2=400V (Gain~140), ET=5.45KV/cm, EC=5.86KV/cm, CCD Binning 4x4, Texp.=10ms; (c,d) VGEM1=VGEM2=430V (Gain~300), ET=5.45KV/cm, EC=0, CCD Binning 7x7, T=10ms. Bragg curves of 241Am alpha particles • Light callibration using full tracks ~ 180 detected photons per deposited keV • light yield ~0.6 photons/secondary electron Projections of alpha tracks Ar-5%CF4 • Triple GEM, VGEM=450V, g=82, ED=1kV/cm, ET=3.4 kV/cm, b=7x7, EC=0, • • 241Am alpha particles energy = 5.48 Mev Range of 241Am alpha particles in Ar = 3.42 cm The length and orientation of the track can be measured using charge or PMT signals Perfomance of a Tracking Device Based on the GEM Scintillation", F.A.F. Fraga, L.M.S. Margato, S. T. G. Fetal, R. Ferreira Marques and A.J.P.L Policarpo, IEEE Trans. on Nucl. Sci. 49, NO.1, February 2002, pg.281- 284 3He thermal neutron detectors • Thermal neutron capture in 3He • 3He + n p + 3H + 770 keV • proton range = 4.4 mm, triton range = 1.6mm (1bar CF4) • R.B. Knott, G.C. Smith, G. Watt, J.W. Boldemann, NIM A392(1997)62 Data on charge gain and light emission in CF4 pressures 400mbar, 1, 2 and 3 bar 0,4 bar (420 V) 2 bar (740 V) 1000 1 bar (560 V) 3 bar (740 V) Gain 100 10 1 35 45 55 65 Hole diameter (micron) 75 • Gain saturates for smaller holes at lower pressures as reported in NIMA 419(1998)410 85 • 60 m hole GEMs have higher light yield Data on CF4 + He CF4 pressure = 400mbar, He = 0.6 and 3.6 bar GEM 140/80: He-CF4 (600/400 mbar) GEM 140/60: He-CF4 (600/400 mbar) GEM 140/45: He-CF4 (600/400 mbar) 10000 100 100 Gain 1000 Gain 1000 10 10 1 1 300 350 400 450 500 550 300 350 400 450 500 550 600 VGEM (V) VGEM (V) 100%CF4 GEM 140/80: He-CF4 (0,6/0,4 bar) GEM 140/60: He-CF4 (0,6/0,4 bar) GEM 140/45: He-CF4 (0,6/0,4 bar) 1E-05 8E-06 Light Yield (a.u./e) GEM 140/80: He-CF4 (3600/400 mbar) GEM 140/60: He-CF4 (3600/400 mbar) GEM 140/45: He-CF4 (3600/400 mbar) 10000 Photon yield 0.077 photons/secondary electron at 1 bar He-60%CF4 6E-06 4E-06 2E-06 0E+00 300 350 400 450 VGEM (V) 500 550 600 Closed detector • Clean GEM chamber- stainless steel – GEMs 5 x 5cm – 50mm diameter transparent window – carbon fiber window or aluminum cover Details of the clean GEM chamber Images of proton and triton tracks in 3He- 400 mbar CF4 • • • • • • • • • Triple GEM camera two 80 m, one 60 m metal hole absorbtion space 3 mm ED (drift field) =1KV/cm, ET (transfer field) = 3.25 kV/cm, EC (collection field) = 0 VGEM1 =VGEM2 =350V. Binning 7x7 AmBe source with Polyethylene shielding Images of proton and triton tracks in 3He- 400 mbar CF4 • Projection of the light intensity along the track as measured by the CCD CCD readout of GEM based neutron detectors, F.A.F. Fraga, L.M.S. Margato, S. T. G. Fetal, M.M.F.R. Fraga, R. Ferreira Marques, A.J.P.L Policarpo, B. Guerard, A. Oed, G. Manzini and T. van Vuure, Nucl. Instr. and Meth. In Physics Research A 478 (2002) 357 X-rays radiography Car key (~5 cm) radiography X-ray energy ~8keV Xe-10%CO2 at 1bar absobtion length ~3 mm Plastic gearwheel ~1.5 cm radiography Imaging detectors based on the GEM scintillation light, F.A.F. Fraga, L.M.S. Margato, S. T. G. Fetal, I. Ivaniouchenkov,, R. Ferreira Marques, A.J.P.L Policarpo, presented at the IEEE NSS 1999 High pressure Xe X-ray detector • A 25 mm thick conversion volume at 5 bar Xe will have ~ 90% detection efficiency for 17.5 keV X-rays! • 50 mm will be needed to get 80% efficency at 25 keV • Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection, R. Kreuger, C. W. E. van Eijk, F. A. F. Fraga, M. M. Fraga, S. T. G. Fetal, R. W. Hollander, L. M. S. Margato, T. L. van Vuure, presented at the IEEE NSS 2001 High pressure Xe / TMA 1000 0 2 4 100 10 Xe +5%TMA (1bar) %TMA 8 10 12 Xe/TMA 3bar 6 150.0 Charge Gain Gain • Xe-TMA strong Penning effect • TMA ion. pot 8.1 eV • Xe metastable pot. 8.3 • Operation at a lower voltage Xe +2.5%TMA (3bar) Xe +2.5%TMA (5bar) 1 150 200 250 300 350 400 450 500 Vgem=320 V 100.0 VGEM (V) 50.0 single GEM 60/70/140 0.0 0 50 100 150 200 PT MA (mbar) 250 300 350 Operation of Xe - TMA at 5 bar (light) Xe/TMA - 3 bar 0,625%TMA 1,25%TMA 2.0E-09 Xe+5%TMA - 3 bar Xe+5%TMA - 5 bar 2,5%TMA 5%TMA Step = 2 nm Slit aperture = 1 mm Gas Gain ~ 100 1.0E-09 5.0E-10 2.0E-09 #Counts/e 1.5E-09 #Counts/e Xe+5%TMA - 1bar 1.5E-09 Step=2nm Slit aperture=1mm Gas Gain ~50 1.0E-09 5.0E-10 0.0E+00 250 270 290 310 330 350 370 390 (nm) 0.0E+00 250 270 290 310 330 350 370 390 (nm) •Light yield •~ 0.3 ph/ sec. electron •~104 ph / keV with gas gain 700 •Scintillators have 20-50 ph/ keV UV CCD system ~40 keuro, CCD chip ~10 keuro Radiography of a small dog-whelk double GEM, 5mm absorption space, Xe-2.5%TMA at 5bar, molybdenium X-ray tube at 40 kV Radiography of a small snail ~8mm double GEM, 5mm absorption space, Xe-2.5%TMA at 5bar, molybdenium X-ray tube at 30 and 40 kV The width of the shell fissure is similar to the GEM picth Images of a 50 micron slit collimator • X-ray voltage 30kV • Collimator length 25 mm • Collimator slit 50 m • ~ 65 m CCD readout of high pressure xenon-TMA GEM detectors for X-ray imaging, L. M. S. Margato , F. A. F. Fraga*, M. M. F. R. Fraga*, S. T. G. Fetal*, R. Ferreira Marques*, A. J. P. L. Policarpo*, T.L. van Vuure, R. Kreuger, C.W.E. van Eijk and R.W. Hollander, presented at the SAMBA 2002, Trieste, 2002 Xe-2.5%TMA rise-time at 1 and 3 bar versus collection field Double GEM Xe+2.5%TMA (1bar) Ed=0.5kV/cm.bar, Et=2kV/cm.bar Double GEM Xe+2.5%TMA (3bar) Ed=0.5kV/cm.bar, Et=0.25kV/cm.bar charge (5.9 keV) PMT (5.9 keV) 250 200 200 Rise Time (ns) Rise Time (ns) charge (5.9 keV) PMT (5.9 keV) 250 150 100 150 100 50 50 0 0 0.0 0.5 1.0 1.5 2.0 Ec (kV/cm.bar) (collection Field) 2.5 0.0 0.5 1.0 1.5 2.0 Ec (kV/cm.bar) (collection Field) 2.5 Energy resolution using Xe2.5% TMA 5bar (light signals) Double GEM Xe+2.5%TMA (5bar) PMT signals 109Cd (22.1keV) 2500 #counts 2000 1500 1000 500 0 0 100 200 300 channel 400 500 Recoil detector for fast neutron (1-10 MeV) spectroscopy • Single event energy resolution • Efficiency is expected to be more than two orders of magnitude better than current Li foil detectors (~10-7) • Gaseous media • GEM multiplication • Scintillation read by CCD Recoil neutron spectrometer • We have to measure – Energy of the recoil • Total light measurement – Angle of the recoil nucleus • ratio between track real length (estimated from the recoil energy) and projection read by the CCD Gas selection (neutron recoil spectrometer) • Maximal track length should be around 5 cm • Efficient scintillator neutron energy (MeV) 4He recoil energy (64%) 0.8 1.6 7.8 15.6 0.5 1.0 5.0 10.0 range (cm) He Ne 1.8 0.7 2.8 1.1 18.3 6 57 16.9 Ar 0.3 0.5 3.7 10.5 Kr Xe 0.3 0.4 2.6 7 Simulated using SRIM-2000 (J.F. Ziegler, J.P. Piersack) Experimental measurements with alpha particles are being carried on to estimate the accuracy of the spectrometer Tests will be done at the Democritos (Greece) neutron accelerator facility 0.2 0.3 1.9 5.2 Medical applications • Dose imaging in radioteraphy GEM2 GEM1 kapton mylar Window window Proton Beam Mirror 3.5 mm (E = 150 MeV) 3 mm L1 L1+L2 ~ 2m L2 Cathode CCD camera D C B A Dose imaging in radiotherapy with an Ar-CF4 filled scintillating GEM,S. Fetal, C.W.E. van Eijk, F. Fraga, J. de Haas, R. Kreuger, T.L. van Vuure and J.M. Schippers, PSD6, submitted to NIM Other projects • Thermal neutron imaging – Solid converter detector with GEM active scintillator readout – Groups integrating the TECHNI collaboration • X-ray polarization – GEM polarimeter with optical readout • GEM coating with p-terphenyl Conclusions • Active scintillators using GEMs can be used with a large variety of gases Ar-CO2, Ar-CF4, Ar-TEA, HeCF4, Xe-CO2, Xe-TEA, Xe-TMA,... • Very large number of emitted photons per detected event – typically 2-3 orders of magnitude than solid scintillators • Can achieve high resolution • Large area • Fast signals, high count rates(>105c/s/mm2) • promising with APDs and position sensitive PMTs Acknowledgements • Current work on GEM luminiscence is supported by the contract CERN/P/FIS/ 2001/2567 with the Portuguese FCT. • This work was done with the collaboration of the GDD, CERN(F.Sauli), TUD (C. van Eijk) and SDN, ILL (B. Guerard) Photon-counting position sensitive devices APD arrays • Hamamatsu S8550