Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 10 Diffraction March 9, 11 Fraunhofer diffraction: The single slit 10.1 Preliminary considerations Diffraction: The deviation of light from propagation in a straight line. There is no essential physical distinction between interference and diffraction. Huygens-Fresnel Principle: Every unobstructed point of a wave front serves as a source of spherical wavelets. The amplitude of the optical field at any point beyond is the superposition of all these wavelets, taking into account their amplitudes and phases. Fraunhofer (far field) diffraction: Both the incoming and outgoing waves approach being planar. a2/lR<<1, where R is the smaller of the two distances from the source to the aperture and from the aperture to the observation point. a is the size of the aperture. The diffraction pattern does not change when moving the observation plane further away. Fresnel (near field) diffraction: Plane of observation is close to the aperture. General case of diffraction. The diffraction pattern changes when the observation plane moves. P S a R1 R2 1 Mathematical criteria for Fraunhofer diffraction: The phase for the rays meeting at the observation point is a linear function of the aperture variables. S P y' Waves from a point source: Harmonic spherical wave: E ( r, t ) y' sinq A A cos( kr t ), or E ( r, t ) ei ( kr t ) r r y A is the source strength. P (x,y) D/2 Coherent line source: r dy' x exp( ikr) E ( x, y ) εL dy ' D / 2 r D/2 -D/2 eL is the source strength per unit length. This equation changes a diffraction problem into an integration (interference) problem. 2 y 10.2 Fraunhofer diffraction 10.2.1 The single slit P (x,y) D/2 The slit is along the z-axis and has a width of D. y' q r ( y ' ) R 2 y '2 2 Ry ' sin q cos2 q 2 R y ' sin q y' 2R r R x -D/2 exp( ikr) In the phase, r is approximated by R-y' sinq, if D2/Rl <<1. E ( x, y ) e L dy ' D / 2 Fraunhofer diffraction condition. r D / 2 exp[ ik ( R y ' sin q )] eL dy ' D / 2 R In the amplitude, r is approximated by R. e D sin[( kD / 2) sin q ] L exp( ikR) R (kD / 2) sin q e D sin L exp( ikR), (kD / 2) sin q R D/2 sin I (q ) I (0) 2 The overall phase is the same as a point source at the center of the slit. Integrate over z gives the same function. 3 sin I (q ) I (0) 2 y kD sin q 2 P (x,y) D/2 y' dI 2 sin ( cos sin ) I (0) 0 d 3 r q R x -D/2 minima sin 0, , 2 , 3 ... tan , 0, 1.43 , 2.46 , 3.47 ,... maxima sin I (q ) I (0) I/I(0)= 0.047 0.016 (©WIU OptoLab) 2 Width of the central peak 2 2l 2 q kD / 2 D Widths of the side peaks q kD / 2 l D 4 Phasor model of single slit Fraunhofer diffraction: rolling paper 5 Read: Ch10: 1-2 Homework: Ch10: 3,7,8,9 Due: March 27 6 March 23 Double slit and many slits 10.2.2 The double slit E ( x, z ) eL R b/2 b / 2 eL P (x,z) exp[ ik ( R z ' sin q )]dz ' a b / 2 exp[ ik ( R z ' sin q )]dz ' R a b / 2 e b sin exp( ikR)1 exp( ika sin q ) L R z b a q x be Let I 0 L , intensity at the axis when there is only one slit. (We omit the 1/2 factor.) R (ka / 2) sin q (kb / 2) sin q 2 2 sin cos 2 I (q ) 4 I 0 The result is a rapidly varying double-slit interference pattern (cos2) modulated by a slowly varying single-slit diffraction pattern (sin2/ 2). 7 2 sin cos 2 I (q ) 4 I 0 sin( b sin q / l ) 2 a sin q I (q ) I (0) cos l b sin q / l 2 Single-slit diffraction Two-slit interference Fringes Envelope Question: Which interference maximum coincides with the first diffraction minimum? b sin q l a m a sin q ml b “Half-fringe” (split fringe) may occur there. Our author counts a half-fringe as 0.5 fringe. half-fringe (©WIU OptoLab) 8 10.2.3 Diffraction by many slits P (x,z) z b R a q x C e L / R, F ( z ' ) exp[ ik ( R z ' sin q )] E ( x, z ) C b/2 b / 2 bC bC sin sin F ( z ' )dz 'C a b / 2 a b / 2 F ( z ' )dz ' C 2 a b / 2 2 a b / 2 F ( z ' )dz '... C ( N 1) a b / 2 ( N 1) a b / 2 F ( z ' )dz ' exp( ikR)1 exp( i 2 ) exp( i 4 ) ... exp[ i 2( N 1) ] exp( ikR) 2 1 exp( i 2 N ) 1 exp( i 2 ) sin sin N I (q ) I 0 sin (ka / 2) sin q (kb / 2) sin q 2 9 2 sin sin N I (q ) I 0 sin (ka / 2) sin q (kb / 2) sin q 2 Principle maxima: 0, , 2 , ... Minima (totally N-1): 2 3 ( N 1) , , , ... N N N N Subsidiary maxima (totally N-2): 3 5 (2 N 3) , , ..., 2N 2N 2N sin 2 sin N sin a 4b N 6 2 10 Phasor model of three-slit interference: rotating sticks 11 Read: Ch10: 2 Homework: Ch10: 10,11,12 Due: April 3 12 March 25 Rectangular aperture 10.2.4 The rectangular aperture Coherent aperture: E eA Y y exp( ikr) dS r Aperture dS=dydz P(Y,Z) r R R X 2 Y 2 Z2 r X 2 (Y y ) 2 ( Z z ) 2 R 1 ( y 2 z 2 ) / R 2 2(Yy Zz ) / R 2 x z X Z R 1 2(Yy Zz ) / R 2 R 1 (Yy Zz ) / R 2 E (Y , Z ) e A exp( ikR) R Fraunhofer diffraction condition exp ik (Yy Zz) / RdS Aperture 13 Y y Rectangular aperture: dS=dydz P(Y,Z) r R b z E (Y , Z ) e A exp( ikR) e A exp( ikR) R R a/2 x a Z exp ik (Yy Zz) / RdS Aperture b/2 a / 2 b / 2 exp ik (Yy Zz ) / R dydz ka Z ka ' ( sin q a ), abe A exp( ikR) sin ' sin ' 2 R 2 , R ' ' ' kb Y ( kb sin q ). b 2 R 2 sin ' I (Y , Z ) I (0) ' 2 sin ' ' 2 14 sin ' I (Y , Z ) I (0) ' Y minimum: Z minimum: 2 sin ' ' 2 ' kaZ / 2 R, ' kbY / 2 R. 2R kb 2R ' kaZ / 2 R , 2 , ... Z m ka ' kbY / 2 R , 2 , ... Y m 15 Read: Ch10: 2 Homework: Ch10: 14,17 Due: April 3 16 March 27 Circular aperture 10.2.5 The circular aperture Importance in optical instrumentation: The image of a distant point source is not a point, but a diffraction pattern because of the limited size of the lenses. Yy Zz q sin sin q cos cos q cos( ) E (Y , Z ) e A exp( ikR) e A exp( ikR) R 2 Aperture 0 0 exp ik q / R cos( )dd R 0 e exp( ikR ) 2 a A 0 0 exp ik q / R cos dd R a e exp( ikR) A 2 J 0 ( kq / R )d 0 R e exp( ikR) J ( kaq / R ) A 2a 2 1 R kaq / R 4e A2 A2 J 1 ( kaq / R ) E R 2 kaq / R 2 2 P(Y,Z) q a q R x z exp ik (Yy Zz) / RdS a Y y Z Bessel functions:. 1 2 exp( iu cos v)dv 2 0 i m 2 J m (u ) exp[ i (mv u cos v)]dv 2 0 d m [u J m (u )] u m J m 1 (u ) du J (u ) 1 lim 1 u 0 u 2 J 0 (u ) 2 2 J (kaq / R) 2 J1 (ka sin q ) I (q ) I (0) 1 I ( 0 ) ka sin q kaq / R 17 2 2 J (ka sin q ) I (q ) I (0) 1 ka sin q 2 J0(u) J1(u) u I (q ) / I (0) q1 0.018 Radius of Airy disk: kasin q 3.83 J1 (kaq / R) 0 kaq1 / R 3.83 q1 1.22 Rl fl , 1.22 for a lens 2a D P D f 18 Read: Ch10: 2 Homework: Ch10: 25,28 Due: April 3 19 March 30 Resolution of imaging systems 10.2.6.0 Equivalence between the far field and the focal plane diffraction pattern Two coherent point sources: P y R a q a sinq E1 (q y / R ) C1 exp(ikR ) C2 exp[ik ( R a sin q )] E2 (q y '/ f ) C1 exp(ikL) C2 exp[ik ( L a sin q )] L a q a sinq q f P' y' E (q ) 2 2 2 exp ik ( L R ) constant 2 E1 (q ) (does not depend on q ) y y' y' f q , R f y R • This applies to any number of arbitrarily distributed point sources in space. • Far field and focal plane produce the same diffraction pattern, but with different sizes. • R is replaced by f in the focal plane pattern. A lens pulls a far-field diffraction pattern to its focal plane, reduces the size by f/R. 20 10.2.6 Resolution of imaging systems Image size of a circular aperture: P D q1 1.22 q f fl D q1 l 1.22 f D Rayleigh’s criterion for bare resolution: The center of one Airy disk falls on the first minimum of the other Airy disk. We can actually do a little better. Image size of a far point source: P D q q1 l 1.22 f Dlens f Angular limit of resolution: min 1.22 l D Overlap of two incoherent point sources: far away P2 S1 S2 f D q P1 21 Angular limit of resolution: min Our eyes: min 550 nm 1' 2 mm Pupil diameter 1.22 l D About 1/3000 rad Focal length 150mm Human cone photoreceptor cells Spot distance on the retina: 20 mm/3000=6.7mm Space between human photoreceptor cells on the retina: 5-7mm. Pixel size of a CCD camera: ~7.5 mm. Wavelength dependence: CD DVD Question: Comparing the circular with the square aperture, why does the square aperture produce a smaller diffraction pattern? (l/D vs. 1.22 l/D) 22 Read: Ch10: 2 No homework 23 April 1, 3 Gratings Diffraction grating: An optical device with regularly spaced array of diffracting elements. Transmission gratings and reflection gratings. Grating equation: a(sin q m sin qi ) ml 2 a a qm qm qi qi 1 m=0 -1 -2 Blazed grating: Enhancing the energy of a certain order of diffraction. Blaze angle: g Specular reflection: qr qi 2g qm a g qi specular qr q0 0th 24 Grating spectroscopy: Angular width for a spectral line: N-slit interference Between two minima, (N-1)/N to (N+1)/N . 2 2 sin N 2l sin N q Na cos q m 2 (ka / 2)(sin q sin q i ) q ka cos q sin I (q ) I 0 2 q l Angular width of a spectral line due to instrumental broadening. Inversely proportional to Na. d qm Angular dispersion: a(sin q m sin q i ) ml dq m m dl a cos q m dl 25 Limit of resolution: Barely resolved two close wavelengths: l min 2l Na cos q m dq m m ml Angular separation from dispersion q separation dl a cos q m a cos q m Rayleigh' s criterion for l min : q width 2q separation l Na(sin q m sin qi ) mN l min l Angular w idth of each wavelengt h ( q ) width Resolving power: l mN l min Question: Why does the resolving power increase with increasing order number and with increasing number of illuminated slits? qwidth qseparation l 26 Free spectral range: a(sin q m sin q i ) m(l l ) (m 1)l llfsr fsr m =3 ll m m fsr m =2 m =1 l ll sinqm In higher order diffraction the spectrum is more spread in angle. This results in a higher resolving power but a narrower free spectral range. 27 Read: Ch10: 1-2 Homework: Ch10: 32,33,34,39,41 Due: April 10 28