Download Raman-Nath diffraction

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 12. Interaction of Light and Sound
12.0 Introduction
Acousto-Optic(AO) effect :
# Effect of change in the index of refraction of medium (crystal)
by an Acoustic wave
# Acoustic wave  Photoelastic effect  Change in refractive index
Reference :
A. Ghatak, K. Thyagarajam, “Optical Electronics”, Cambridge Univ. Press
A. Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons
Nonlinear Optics Lab.
Hanyang Univ.
Photoelastic effect
: Mechanical strain  Index of refraction
x2 y2 z 2
Index ellipsoid for Principal axes : 2  2  2  1
n1 n2 n3
Strain tensor elements, S :
S xx  u
x
, S yy  v

y

, S zz  w
S xy   u   v
 S yx

y

x


S yz  v   w   S zy
z  y 
S xz  u  w  S zx
z
x





z
S1  S xx , S 2  S yy , S3  S zz : Normal strain
S4  S yz , S5  S zx , S6  S xy : Shear strain
where, u, v, w : displacements along the x, y, z axes
Nonlinear Optics Lab.
Hanyang Univ.
Change in index of refraction due to the mechanical strain :
6
1
( 2 )i  pij S j (i1,,6)
n
j 1
where, Pij : Elasto-Optic (Strain Optic) Coefficient (6x6 matrix)  Table 9.1 / 9.2
The equation of the index ellipsoid in the presence of a strain field :
 1
 2 1
 2 1






x  2  pij S j  y  2  p2 j S j  z  2  p3 j S j 
 n1 j

 n2 j
  n3 j

 2 yz  p4 j S j  2 xz p5 j S j  2 xy p6 j S j 1
2
j
j
j
Nonlinear Optics Lab.
Hanyang Univ.
Example) Sound wave propagating along the z direction in water
Sound wave : w( z , t ) Azˆcos(t  Kz )
S1 S xx u/x0, S 2 S yy v/y0, S3 S zz w/z KAsin( t Kz)Ssin( t Kz)
S 4 S yz (v/z )(w/y)0, S5 S zx (u/z )(w/x)0, S6 S xy (u/y)(v/x)0
Elasto-Optic Coefficient for the water (isotropic, Table 9.1) :
 p11
p
 12
 p12

pij  0

0


0

p12
p11
p12
p12
p12
p11
0
0
0
0
0
0
0
0
1
( p11  p12 )
2
0
0
0
0
1
( p11  p12 )
2
0
0
0
0





0



0


1
( p11  p12 )
2

0
0
0
1
1
)


(
) 2  p12 Ssin( t  Kz),
1
n2
n2
1
( 2 )3  p11Ssin( t  Kz),
n
1
( 2 ) 4,5, 6 0
n
 (
The new index ellipsoid :
1

1

1

x 2  2  p12 Ssin( t  Kz)  y 2  2  p12 Ssin( t  Kz)  z 2  2  p11Ssin( t  Kz) 1
n

n

n

Nonlinear Optics Lab.
Hanyang Univ.
Example) y-polarized Shear wave propagating along the z direction in Ge
Sound wave : v( z , t ) Ayˆ cos(t  Kz )
S1 S xx u /x0, S 2 S yy v/y 0, S3 S zz w/z 0,
S 4 S yz (v/z )(w/y ) KAsin( t  Kz )S sin( t  Kz ),
S5 S zx (u /z )(w/x)0, S 6 S xy (u /y )(v/x)0
Elasto-Optic Coefficient for the Ge (cubic, Table 9.1) :
 p11
p
 12
p
pij  12
0
0

 0
p12
p11
p12
0
0
0
p12
p12
p11
0
0
0
0
0
0
p44
0
0
0
0
0
0
p44
0
0 
0 
0 

0 
0 

p44 
1
1
1
)


(
)


(
)3 0,
1
2
n2
n2
n2
1
( 2 ) 4  p44 Ssin( t  Kz),
n
1
( 2 )5, 6 0
n
 (
The new index ellipsoid :
1 2 2 2
( x  y  z )2 yzp44 Ssin( t  Kz)1
2
n
Nonlinear Optics Lab.
Hanyang Univ.
Acousto-Optic effect
Bragg diffraction & Raman-Nath diffraction
L
Vector Representation

light wave
acoustic wave
# Spread angle of Acoustic wave : ~
# Diffraction angle of Light :  B ~
# Dimensionless parameter : Q 


L
2 n
4B 2L


n2
Raman-Nath diffraction
: acoustic wave vector
has an angular distribution
Bragg diffraction
: acoustic wave vector
is well defined
 1 : Bragg diffractio n
 1 : Raman-Nath diffractio n
Nonlinear Optics Lab.
Hanyang Univ.
Example) Water, n=1.33, =6MHz (vs=1,500 m/s), =632.8 nm
vs /250m
L  2 n/( 2)2 cm : Raman -Nath Regime
 2 cm
: Bragg Regime
Bragg diffraction :
Single order diffraction
Raman-Nath diffraction :
Multiple order diffraction
Nonlinear Optics Lab.
Hanyang Univ.
Raman-Nath diffraction
Moving periodic refractive index grating : nz, t   n0  n sin t  Kz 
Consider L is small enough so that the medium behave as a thin phase grating,
2
 
nz, t L  0  1 sin( t  Kz)

where, 12/n0L, 1=(2/)n0L
The transmitted field on the plane x=L :
Et  E0 ei[t 0 1 sin(t  Kz )]
e
i sin


im
J
(

)
e
 m
m  
Et  E0ei (t 0 ) [ J 0 (1 )  J1 (1 ){ei  e i }  J 2 (1 ){e 2i  e 2i }        ]
where,
  (t  Kz)
Nonlinear Optics Lab.
Hanyang Univ.
Et0  E0 J 0 (1 )ei[t k ( x  L ) 0 ]
Et  E0 J 0 (1 )ei (t 0 )
 E0 J1 (1 )[e
i (   ) t  kz 0 ]
 E0 J 2 (1 )[e
e
i (  2  ) t  2 kz 0 ]
i (   ) t  kz 0 ]
e
amplitude reduction
]
i (  2  ) t  2 kz 0 ]
 
]
Frequency :  ,  
Wave vector : k1 [( ) 2 /c 2 k 2 ]1/2 ,
k1 [( ) 2 /c 2 k 2 ]1/2
Propagation in x>L :
 E0 J1 (1 )e
i[(   ) t  k1 ( x  L )  kz 0 ]

1
 1
E0 J1 (1 )ei[(  )t k1 ( x  L ) kz 0 ]
Diffraction angles :
K


k n
K

sin  1    
k
n
sin 1 
Nonlinear Optics Lab.
Hanyang Univ.
: +1 order
: -1 order
m-th order diffractive wave :
# Frequency :  m

sin


m
# Diffraction angle :
m
n
# L
2
1
!
2 2
: The restriction on length of medium is
severe at higher frequency
 Diffraction efficiency reduction
J 0 (1 )0, 1 
2
nL2.405, 5.520, 8.654,

1  1.85  J1 (1 )  0.582 : First order diffraction maximum
Nonlinear Optics Lab.
Hanyang Univ.
Bragg diffraction
In this regime, we can no longer consider the refractive index perturbation to act as a thin
phase grating. We should consider the propagation equation of light ;
2
 e  0 2    sin( t  kz)e
t

2
 2e
2
 ( 0 2 )e   0  sin( t kz) 2
t
t
2
converting to 2-D problem ( x : acoustic, z : light) :
2
i ( t kz )  e
 2e  2e
 2e 1
i ( t kz )


0 2   0  (e
e
) 2
x 2 z 2
t 2i
t
Total e-field :
e  e0  e  e
where, e0  A0 ( x,z )ei (tkr )  A0 ( x,z )ei (txz )
e  A( x,z )ei (tk  r )  A ( x,z )ei[ )t  x  z ]
Nonlinear Optics Lab.
Hanyang Univ.
Let,  20  k 2   2   2
(  ) 2 0  k2   2   2
And, slow varying approximation ;
2 A
A  2 A
A
 k
, 2  k
2
x
x z
z
A 
 A
2i 0   0 ei (t xz )
z 
 x
A 
 A
2i       ei[(  )t   x  z )]
z 
 x
A 
 A
2i       ei[(  ) t   x  z )]
z 
 x
1
  0  ei ( t kz ) e i ( t kz )  A0 ei[(t xz )] ( ) 2 A ei[(  ) t   x  z )] ( ) 2 A ei[(  )t   x  z )]
2i



Nonlinear Optics Lab.
Hanyang Univ.


A 
1
 A
2i 0   0 ei (xz )   2  0   A e i[  x(   k ) z ]  A e i[  x(   k ) z ]
z 
2i
 x
A 
1
 A
2i       e i (  x  z )   2  0 A0 e i[x(  k ) z ]
z 
2i
 x
Nonlinear Optics Lab.

Hanyang Univ.
(1) Small Bragg angle diffraction
A
 0 
0
z
 2i
dA0 i (x  z )
e
dx

 2i 

1 2
 0   A e i[  x (    K ) z ]  A e i[  x (    K ) z ]
2i

dA i (  x    z )
e
dx

     K
&
1 2
 0 A0e i[x  (   k ) z ]
2i
    K : Bragg condition
Nonlinear Optics Lab.
Hanyang Univ.
These equations have a solution for A when only    ,
The solutions for +=, -= are independent each other, so let 
~
dA0 ~ ix
kA e
dx
~
dA
~
kA0 e ix
dx
  0 
where,  
~
~
d 2 A0
dA0 2 ~

i ( )
 A0 0
dx 2
dx
2
4( )1/2
   
solution :
~
ix ( 12   )
ix ( 12   )
A0 ( x)C0e
 D0 e

where,   k
1/ 2
~ 

A0 
 A0
 2 0 
~ 
 A
A  
 
 2 0 
1/ 2

2
 14 ( ) 2

1/ 2

~
ix ( 1   )
ix ( 1   )  ix
A ( x) C e 2
 D e 2
e
 i     C
D  i    D

where, C 

Nonlinear Optics Lab.
1
2
0
1
2
0
Hanyang Univ.
Diffraction efficiency, h
~
~
A0 ( x0)1, A ( x0)0 (initial condition)
 C0  12  41  , D0  12  41 
0-th and 1-st diffraction powers :
2
~
P0 ( x) A0 ( x) cos 2 (x) 
   sin
2
~
P ( x) A ( x)  
2

2
 sin
2
2
2
(x)
(x)
i) P0 ( x) P ( x)1 2  2  14 ( ) 2 
ii) Maximum transfer :     0 ;   
P0 ( x)cos 2 (x)
P ( x)sin 2 (x)
Diffration efficiency :
h  p ( L)sin 2 (L)
h 1L 2 ,3 2 ,
Nonlinear Optics Lab.
Hanyang Univ.
  
1
0
1

2 
n 

 
  0 n 4 pS : scalar expression

 n3 pS 
 
 
    ncos B 
4c cos B 
c

Acoustic intensity : I a 
 
1 3 2
 va S (Text p. 483)
2

( M 2 I a )1/2
2cos B
M 2 n 6 p 2 / va3 : Figure of Merit
where,
Diffraction efficiency :


( M 2 I a )1/ 2 L 
 2 cos  B

h  sin 2 

Nonlinear Optics Lab.
Hanyang Univ.
Acoustic intensity for maximum efficiency :
I am 
2 cos 2  B
Diffraction figure of merit
of the material relative to water
2M 2 L2
Acoustic power for maximum efficiency
(LH cross-section, maximum impedance matching case) :
pam  I a LH 
2 cos 2 B  H 
2M 2
1

 
M2
L
Nonlinear Optics Lab.
Hanyang Univ.
(2) Large Bragg angle diffraction
  /2 
A
0
x

A0 i (xz ) 1 2
e
   0  A e i[  x(   K ) z ]  A e i[  x(   K ) z ]
z
4
A
1
   e i (  x  z )   2  0 A0 e i[x(  K ) z ]
z
4

x-dependent term 
Nonlinear Optics Lab.
  
Hanyang Univ.

These equations have a solution for A when only    K ,
The two solutions are independent each other, so let
1) K Co-directional coupling)
~
A0  ~ i (  ) z
 A e
z

~
A
 ~
   A0 e i (  ) z
z

Solutions :
~
iz ( 12   )
iz ( 12   )
A0 ( z )C0e
 D0e
 2  0   2 
1
where,  

4(    )1/2 4c 2  0 (    )1/2
1/ 2
~ 

A0 
 A0
2

0


1/ 2
~ 

A  
A
2 0  

      k

where,   

2
 ( )
1
4

2 1/ 2

~
iz ( 1   )
iz ( 1   )  iz
A ( z ) C e 2
 D e 2
e
     C
D  i    D

where, C  i

Nonlinear Optics Lab.
1
2
0
1
2
0
Hanyang Univ.
Diffraction efficiency, h
~
~
A0 ( z  0)  1 , A ( z  0)  0
 C0  12  41  , D0  12  41 
0-th and 1-st diffraction powers :
2
2
~


2


P0 ( z )  A0 ( z )  cos (z )  
sin 2 (z )

2 

2
2
~

P ( x)  A ( z ) 
sin 2 (z )

 
Diffraction efficiency :
 
h    sin 2 (L)
 
2

1
1    / 4 
2
2

sin {L 1 
2
  2
4 2

1/ 2
}
Nonlinear Optics Lab.
Hanyang Univ.
2) K Counter-directional coupling)
~
A0
~
 A ei (  ) z
z
~
A
~
 A0 e i (  ) z
z
Solutions :
where,    K


~
iz ( 12   )
i (  ) z
gz
 gz
A0 ( z )e
P1e Q1e  D0 e

~
1
A ( z ) e i (  ) z/2 P1 g  2i  e gz Q1 g  2i  e gz
 

where, g    ( )
2
1
4


2 1/ 2
Nonlinear Optics Lab.
Hanyang Univ.
~
~
A0 ( z  0)  1 , A ( z  D)  0

~ 2
P0 ( D) A0 
g2
2
g 2 cosh 2 gD 12   sinh 2 gD
~ 2
P ( D) A 
g    sinh
2
1
2
2
2
gD
2
g 2 cosh 2 gD 12   sinh 2 gD
# Application : DBR reflector
Nonlinear Optics Lab.
Hanyang Univ.
Surface Acousto-Optics
: Diffraction effect through a thin film surface or wave guide
: High intensity localized on the interface  enhancing the diffraction efficiency
: 1967, Ippen et al. (first experimental demonstration in a quartz)
Surface undulation profile by the acoustic wave :
xasin Kz,
K 2

Wave vectors of reflected and transmitted light waves :
k r  k cos  r x̂  sin  r ẑ 
k t  nk  cos t x̂  sin t ẑ 
Electric field on the surface :
E  E 0exp ik  cosx  sin z
Nonlinear Optics Lab.
Hanyang Univ.
1) Reflection wave
E r  c  Eeikr re -ikr r dzd
 E r cE0 eikx(cos cos r )i ( ksin  ) zik r r dz d
e
i sin

 J l ( )eil
l 


E r cE0  J l ( )eilKzi(ksin  ) zik r r dz d
l 
where,
 ka(cos cos r )

cE0  J l ( )2 (  lK ksin )e ik r r d
l 
Nonlinear Optics Lab.
Hanyang Univ.
k r rkcos r xksin r z

E r 2cE0  J l ( )e ikcos r xi ( ksin lk ) z
l 
where,  k sin r k sin lK  k (sin  r sin )lK
l 0,1,2,
Diffraction angle :
sin  r  sin  
l

 r    2kacos , the amplitude of reflected wave :

E r 2 cE0  J l (2kacos )e ikcosxi ( ksin lk ) z
l 
Nonlinear Optics Lab.
Hanyang Univ.
If a0, E r rE 0
 c r

2
 E r rE0  J l (2kacos )e ikcosxi ( ksin lk ) z
l 

rE 0 J l (2kacos )e i ( klkẑ )r
l 
Diffraction efficiency of l-th order :
hl  r rJ l2 (2ka cos  )
2
Nonlinear Optics Lab.
Hanyang Univ.
2) Transmitted wave
Similarly,
E t cE0 eikx(cos ncos t )i ( ksin  ) zik r r dz d
where,  nksin t
 E t tE0  J l kacos nkacos t einkcos t xi ( ksin lK ) z
where,
nksin t ksin lK
Diffraction efficiency of l-th order :
hl 
n cos  t 2 2
t J l (ka cos   nka cos  t )
cos 
Nonlinear Optics Lab.
Hanyang Univ.
Related documents