Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 12. Interaction of Light and Sound
12.0 Introduction
Acousto-Optic(AO) effect :
# Effect of change in the index of refraction of medium (crystal)
by an Acoustic wave
# Acoustic wave Photoelastic effect Change in refractive index
Reference :
A. Ghatak, K. Thyagarajam, “Optical Electronics”, Cambridge Univ. Press
A. Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons
Nonlinear Optics Lab.
Hanyang Univ.
Photoelastic effect
: Mechanical strain Index of refraction
x2 y2 z 2
Index ellipsoid for Principal axes : 2 2 2 1
n1 n2 n3
Strain tensor elements, S :
S xx u
x
, S yy v
y
, S zz w
S xy u v
S yx
y
x
S yz v w S zy
z y
S xz u w S zx
z
x
z
S1 S xx , S 2 S yy , S3 S zz : Normal strain
S4 S yz , S5 S zx , S6 S xy : Shear strain
where, u, v, w : displacements along the x, y, z axes
Nonlinear Optics Lab.
Hanyang Univ.
Change in index of refraction due to the mechanical strain :
6
1
( 2 )i pij S j (i1,,6)
n
j 1
where, Pij : Elasto-Optic (Strain Optic) Coefficient (6x6 matrix) Table 9.1 / 9.2
The equation of the index ellipsoid in the presence of a strain field :
1
2 1
2 1
x 2 pij S j y 2 p2 j S j z 2 p3 j S j
n1 j
n2 j
n3 j
2 yz p4 j S j 2 xz p5 j S j 2 xy p6 j S j 1
2
j
j
j
Nonlinear Optics Lab.
Hanyang Univ.
Example) Sound wave propagating along the z direction in water
Sound wave : w( z , t ) Azˆcos(t Kz )
S1 S xx u/x0, S 2 S yy v/y0, S3 S zz w/z KAsin( t Kz)Ssin( t Kz)
S 4 S yz (v/z )(w/y)0, S5 S zx (u/z )(w/x)0, S6 S xy (u/y)(v/x)0
Elasto-Optic Coefficient for the water (isotropic, Table 9.1) :
p11
p
12
p12
pij 0
0
0
p12
p11
p12
p12
p12
p11
0
0
0
0
0
0
0
0
1
( p11 p12 )
2
0
0
0
0
1
( p11 p12 )
2
0
0
0
0
0
0
1
( p11 p12 )
2
0
0
0
1
1
)
(
) 2 p12 Ssin( t Kz),
1
n2
n2
1
( 2 )3 p11Ssin( t Kz),
n
1
( 2 ) 4,5, 6 0
n
(
The new index ellipsoid :
1
1
1
x 2 2 p12 Ssin( t Kz) y 2 2 p12 Ssin( t Kz) z 2 2 p11Ssin( t Kz) 1
n
n
n
Nonlinear Optics Lab.
Hanyang Univ.
Example) y-polarized Shear wave propagating along the z direction in Ge
Sound wave : v( z , t ) Ayˆ cos(t Kz )
S1 S xx u /x0, S 2 S yy v/y 0, S3 S zz w/z 0,
S 4 S yz (v/z )(w/y ) KAsin( t Kz )S sin( t Kz ),
S5 S zx (u /z )(w/x)0, S 6 S xy (u /y )(v/x)0
Elasto-Optic Coefficient for the Ge (cubic, Table 9.1) :
p11
p
12
p
pij 12
0
0
0
p12
p11
p12
0
0
0
p12
p12
p11
0
0
0
0
0
0
p44
0
0
0
0
0
0
p44
0
0
0
0
0
0
p44
1
1
1
)
(
)
(
)3 0,
1
2
n2
n2
n2
1
( 2 ) 4 p44 Ssin( t Kz),
n
1
( 2 )5, 6 0
n
(
The new index ellipsoid :
1 2 2 2
( x y z )2 yzp44 Ssin( t Kz)1
2
n
Nonlinear Optics Lab.
Hanyang Univ.
Acousto-Optic effect
Bragg diffraction & Raman-Nath diffraction
L
Vector Representation
light wave
acoustic wave
# Spread angle of Acoustic wave : ~
# Diffraction angle of Light : B ~
# Dimensionless parameter : Q
L
2 n
4B 2L
n2
Raman-Nath diffraction
: acoustic wave vector
has an angular distribution
Bragg diffraction
: acoustic wave vector
is well defined
1 : Bragg diffractio n
1 : Raman-Nath diffractio n
Nonlinear Optics Lab.
Hanyang Univ.
Example) Water, n=1.33, =6MHz (vs=1,500 m/s), =632.8 nm
vs /250m
L 2 n/( 2)2 cm : Raman -Nath Regime
2 cm
: Bragg Regime
Bragg diffraction :
Single order diffraction
Raman-Nath diffraction :
Multiple order diffraction
Nonlinear Optics Lab.
Hanyang Univ.
Raman-Nath diffraction
Moving periodic refractive index grating : nz, t n0 n sin t Kz
Consider L is small enough so that the medium behave as a thin phase grating,
2
nz, t L 0 1 sin( t Kz)
where, 12/n0L, 1=(2/)n0L
The transmitted field on the plane x=L :
Et E0 ei[t 0 1 sin(t Kz )]
e
i sin
im
J
(
)
e
m
m
Et E0ei (t 0 ) [ J 0 (1 ) J1 (1 ){ei e i } J 2 (1 ){e 2i e 2i } ]
where,
(t Kz)
Nonlinear Optics Lab.
Hanyang Univ.
Et0 E0 J 0 (1 )ei[t k ( x L ) 0 ]
Et E0 J 0 (1 )ei (t 0 )
E0 J1 (1 )[e
i ( ) t kz 0 ]
E0 J 2 (1 )[e
e
i ( 2 ) t 2 kz 0 ]
i ( ) t kz 0 ]
e
amplitude reduction
]
i ( 2 ) t 2 kz 0 ]
]
Frequency : ,
Wave vector : k1 [( ) 2 /c 2 k 2 ]1/2 ,
k1 [( ) 2 /c 2 k 2 ]1/2
Propagation in x>L :
E0 J1 (1 )e
i[( ) t k1 ( x L ) kz 0 ]
1
1
E0 J1 (1 )ei[( )t k1 ( x L ) kz 0 ]
Diffraction angles :
K
k n
K
sin 1
k
n
sin 1
Nonlinear Optics Lab.
Hanyang Univ.
: +1 order
: -1 order
m-th order diffractive wave :
# Frequency : m
sin
m
# Diffraction angle :
m
n
# L
2
1
!
2 2
: The restriction on length of medium is
severe at higher frequency
Diffraction efficiency reduction
J 0 (1 )0, 1
2
nL2.405, 5.520, 8.654,
1 1.85 J1 (1 ) 0.582 : First order diffraction maximum
Nonlinear Optics Lab.
Hanyang Univ.
Bragg diffraction
In this regime, we can no longer consider the refractive index perturbation to act as a thin
phase grating. We should consider the propagation equation of light ;
2
e 0 2 sin( t kz)e
t
2
2e
2
( 0 2 )e 0 sin( t kz) 2
t
t
2
converting to 2-D problem ( x : acoustic, z : light) :
2
i ( t kz ) e
2e 2e
2e 1
i ( t kz )
0 2 0 (e
e
) 2
x 2 z 2
t 2i
t
Total e-field :
e e0 e e
where, e0 A0 ( x,z )ei (tkr ) A0 ( x,z )ei (txz )
e A( x,z )ei (tk r ) A ( x,z )ei[ )t x z ]
Nonlinear Optics Lab.
Hanyang Univ.
Let, 20 k 2 2 2
( ) 2 0 k2 2 2
And, slow varying approximation ;
2 A
A 2 A
A
k
, 2 k
2
x
x z
z
A
A
2i 0 0 ei (t xz )
z
x
A
A
2i ei[( )t x z )]
z
x
A
A
2i ei[( ) t x z )]
z
x
1
0 ei ( t kz ) e i ( t kz ) A0 ei[(t xz )] ( ) 2 A ei[( ) t x z )] ( ) 2 A ei[( )t x z )]
2i
Nonlinear Optics Lab.
Hanyang Univ.
A
1
A
2i 0 0 ei (xz ) 2 0 A e i[ x( k ) z ] A e i[ x( k ) z ]
z
2i
x
A
1
A
2i e i ( x z ) 2 0 A0 e i[x( k ) z ]
z
2i
x
Nonlinear Optics Lab.
Hanyang Univ.
(1) Small Bragg angle diffraction
A
0
0
z
2i
dA0 i (x z )
e
dx
2i
1 2
0 A e i[ x ( K ) z ] A e i[ x ( K ) z ]
2i
dA i ( x z )
e
dx
K
&
1 2
0 A0e i[x ( k ) z ]
2i
K : Bragg condition
Nonlinear Optics Lab.
Hanyang Univ.
These equations have a solution for A when only ,
The solutions for +=, -= are independent each other, so let
~
dA0 ~ ix
kA e
dx
~
dA
~
kA0 e ix
dx
0
where,
~
~
d 2 A0
dA0 2 ~
i ( )
A0 0
dx 2
dx
2
4( )1/2
solution :
~
ix ( 12 )
ix ( 12 )
A0 ( x)C0e
D0 e
where, k
1/ 2
~
A0
A0
2 0
~
A
A
2 0
1/ 2
2
14 ( ) 2
1/ 2
~
ix ( 1 )
ix ( 1 ) ix
A ( x) C e 2
D e 2
e
i C
D i D
where, C
Nonlinear Optics Lab.
1
2
0
1
2
0
Hanyang Univ.
Diffraction efficiency, h
~
~
A0 ( x0)1, A ( x0)0 (initial condition)
C0 12 41 , D0 12 41
0-th and 1-st diffraction powers :
2
~
P0 ( x) A0 ( x) cos 2 (x)
sin
2
~
P ( x) A ( x)
2
2
sin
2
2
2
(x)
(x)
i) P0 ( x) P ( x)1 2 2 14 ( ) 2
ii) Maximum transfer : 0 ;
P0 ( x)cos 2 (x)
P ( x)sin 2 (x)
Diffration efficiency :
h p ( L)sin 2 (L)
h 1L 2 ,3 2 ,
Nonlinear Optics Lab.
Hanyang Univ.
1
0
1
2
n
0 n 4 pS : scalar expression
n3 pS
ncos B
4c cos B
c
Acoustic intensity : I a
1 3 2
va S (Text p. 483)
2
( M 2 I a )1/2
2cos B
M 2 n 6 p 2 / va3 : Figure of Merit
where,
Diffraction efficiency :
( M 2 I a )1/ 2 L
2 cos B
h sin 2
Nonlinear Optics Lab.
Hanyang Univ.
Acoustic intensity for maximum efficiency :
I am
2 cos 2 B
Diffraction figure of merit
of the material relative to water
2M 2 L2
Acoustic power for maximum efficiency
(LH cross-section, maximum impedance matching case) :
pam I a LH
2 cos 2 B H
2M 2
1
M2
L
Nonlinear Optics Lab.
Hanyang Univ.
(2) Large Bragg angle diffraction
/2
A
0
x
A0 i (xz ) 1 2
e
0 A e i[ x( K ) z ] A e i[ x( K ) z ]
z
4
A
1
e i ( x z ) 2 0 A0 e i[x( K ) z ]
z
4
x-dependent term
Nonlinear Optics Lab.
Hanyang Univ.
These equations have a solution for A when only K ,
The two solutions are independent each other, so let
1) K Co-directional coupling)
~
A0 ~ i ( ) z
A e
z
~
A
~
A0 e i ( ) z
z
Solutions :
~
iz ( 12 )
iz ( 12 )
A0 ( z )C0e
D0e
2 0 2
1
where,
4( )1/2 4c 2 0 ( )1/2
1/ 2
~
A0
A0
2
0
1/ 2
~
A
A
2 0
k
where,
2
( )
1
4
2 1/ 2
~
iz ( 1 )
iz ( 1 ) iz
A ( z ) C e 2
D e 2
e
C
D i D
where, C i
Nonlinear Optics Lab.
1
2
0
1
2
0
Hanyang Univ.
Diffraction efficiency, h
~
~
A0 ( z 0) 1 , A ( z 0) 0
C0 12 41 , D0 12 41
0-th and 1-st diffraction powers :
2
2
~
2
P0 ( z ) A0 ( z ) cos (z )
sin 2 (z )
2
2
2
~
P ( x) A ( z )
sin 2 (z )
Diffraction efficiency :
h sin 2 (L)
2
1
1 / 4
2
2
sin {L 1
2
2
4 2
1/ 2
}
Nonlinear Optics Lab.
Hanyang Univ.
2) K Counter-directional coupling)
~
A0
~
A ei ( ) z
z
~
A
~
A0 e i ( ) z
z
Solutions :
where, K
~
iz ( 12 )
i ( ) z
gz
gz
A0 ( z )e
P1e Q1e D0 e
~
1
A ( z ) e i ( ) z/2 P1 g 2i e gz Q1 g 2i e gz
where, g ( )
2
1
4
2 1/ 2
Nonlinear Optics Lab.
Hanyang Univ.
~
~
A0 ( z 0) 1 , A ( z D) 0
~ 2
P0 ( D) A0
g2
2
g 2 cosh 2 gD 12 sinh 2 gD
~ 2
P ( D) A
g sinh
2
1
2
2
2
gD
2
g 2 cosh 2 gD 12 sinh 2 gD
# Application : DBR reflector
Nonlinear Optics Lab.
Hanyang Univ.
Surface Acousto-Optics
: Diffraction effect through a thin film surface or wave guide
: High intensity localized on the interface enhancing the diffraction efficiency
: 1967, Ippen et al. (first experimental demonstration in a quartz)
Surface undulation profile by the acoustic wave :
xasin Kz,
K 2
Wave vectors of reflected and transmitted light waves :
k r k cos r x̂ sin r ẑ
k t nk cos t x̂ sin t ẑ
Electric field on the surface :
E E 0exp ik cosx sin z
Nonlinear Optics Lab.
Hanyang Univ.
1) Reflection wave
E r c Eeikr re -ikr r dzd
E r cE0 eikx(cos cos r )i ( ksin ) zik r r dz d
e
i sin
J l ( )eil
l
E r cE0 J l ( )eilKzi(ksin ) zik r r dz d
l
where,
ka(cos cos r )
cE0 J l ( )2 ( lK ksin )e ik r r d
l
Nonlinear Optics Lab.
Hanyang Univ.
k r rkcos r xksin r z
E r 2cE0 J l ( )e ikcos r xi ( ksin lk ) z
l
where, k sin r k sin lK k (sin r sin )lK
l 0,1,2,
Diffraction angle :
sin r sin
l
r 2kacos , the amplitude of reflected wave :
E r 2 cE0 J l (2kacos )e ikcosxi ( ksin lk ) z
l
Nonlinear Optics Lab.
Hanyang Univ.
If a0, E r rE 0
c r
2
E r rE0 J l (2kacos )e ikcosxi ( ksin lk ) z
l
rE 0 J l (2kacos )e i ( klkẑ )r
l
Diffraction efficiency of l-th order :
hl r rJ l2 (2ka cos )
2
Nonlinear Optics Lab.
Hanyang Univ.
2) Transmitted wave
Similarly,
E t cE0 eikx(cos ncos t )i ( ksin ) zik r r dz d
where, nksin t
E t tE0 J l kacos nkacos t einkcos t xi ( ksin lK ) z
where,
nksin t ksin lK
Diffraction efficiency of l-th order :
hl
n cos t 2 2
t J l (ka cos nka cos t )
cos
Nonlinear Optics Lab.
Hanyang Univ.