Download ∑ ( ) ( )

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

German tank problem wikipedia, lookup

Student's t-test wikipedia, lookup

Taylor's law wikipedia, lookup

Bootstrapping (statistics) wikipedia, lookup

Resampling (statistics) wikipedia, lookup

Misuse of statistics wikipedia, lookup

Psychometrics wikipedia, lookup

Gibbs sampling wikipedia, lookup

Sufficient statistic wikipedia, lookup

Transcript
Formulas for the Final Exam
y
y=∑
∑ ( y − y )2
∑ ( x − x )2
x
x=∑
sy =
sx =
n
n −1
n
n −1
∑ zxz y z = x − x z = y − y
r=
x
y
n −1
sx
sy
sy
b=r
a = y − bx yˆ = a + bx residual = y − yˆ
sx
Sampling Distribution of p̂ :
Sampling Distribution of y :
Mean: p
Mean: μ
Standard Deviation: SD( pˆ ) =
p(1 − p )
n
Standard Error: SE( y ) =
Single sample (Categorical Variable)
Confidence interval for p :
pˆ − z *
pˆ (1 − pˆ )
to pˆ + z *
n
pˆ (1 − pˆ )
n
pˆ − po
p0 (1 − p0 )
n
z=
Test Statistic:
s
s
to y + t *
n
n
t=
y − μo
s
n
Two independent samples
Confidence interval for μ1 − μ2 :
( y1 − y2 ) − t *
df = n – 1
Test Statistic:
s12 s22
s2 s2
+
to ( y1 − y2 ) − t * 1 + 2
n1 n2
n1 n2
Paired samples
Confidence interval for μd :
s
s
d − t * d to d + t * d
nd
nd
n
Test Statistic:
Single sample (Numerical Variable)
Confidence interval for μ:
y − t*
s
t=
( y1 − y2 ) − 0
s12 s22
+
n1 n2
Test Statistic:
t=
d − μd
sd
nd
df = nd – 1
1