* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Periodicity - ilc.edu.hk
Survey
Document related concepts
Transcript
Periodic Variation in Physical Properties of the Elements H to Ar 1 Elements are arranged in the increasing order of atomic number 2 The modern Periodic Table Horizontal rows periods same no. of occupied shells 7 periods 3 The modern Periodic Table Vertical columns groups same no. of outermost shell electrons 18 groups 4 The modern Periodic Table Periodicity : Properties of elements are periodic functions of atomic number 5 The modern Periodic Table Periodicity : Similar properties of elements recur periodically 6 The modern Periodic Table Periodicity : Properties of elements vary periodically with atomic number 7 The modern Periodic Table Four blocks s, p, d, f Properties depends on electronic configuration 8 s-block : Groups 1A, 2A Outermost orbitals : ns1 ns2 9 p-block : Groups 3A 8A(0) Outermost orbitals : ns2 np1 ns2 np6 10 s-block & p-block elements are called representative elements 11 d-block : Transition elements (Groups 3B 1B) Outermost orbitals : ns2 (n-1)d1 ns2 (n-1)d10 n4 12 d-block : Inner transition elements Outermost orbitals : ns2 (n-2)f1 ns2 (n-2)f14 n6 Lanthanides Actinides 13 Q.1 2 14 Q.1 2 10 15 Q.1 2 10 18 16 Q.1 2 10 18 36 17 Q.1 2 10 18 36 54 18 Q.1 2 10 18 36 54 86 19 Q.1 Atomic no. = 109 Period 7 = 118-6-3 6d 2 10 18 36 54 86 118 20 Q.1 Atomic no. = 123 Period 8 = 118+2+3 5g 2 10 18 36 54 86 118 8 21 Q.1 Atomic no. = 151 Period 8 = 118+2+18+13 6f Period 8 can hold up to 50 elements(119 to 168) 2 10 18 36 54 86 118 8 22 23 Periodic variation in physical properties of the elements H to Ar 1. Melting point 2. Atomic radius 3. First ionization enthalpy 4. Electronegativity 24 Melting point A measure of the ease of the change from solid phase to liquid phase Depends on 25 (a) The strength of the bonds to be broken (b) The extent of bond breaking (c) The structure of the crystal lattice Melting point periodic variation Across a period, 1. the type of bonding changes from Strong metallic Strong covalent Weak van der Waals’ forces 2. the structure of elements changes from 26 Closedpacked metallic Giant covalent Simple molecular Structure and Bonding A summary of the variations in structure and bonding of elements across both Periods 2 27 Structure and Bonding A summary of the variations in structure and bonding of elements across both Periods 3 28 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 29 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 A. Variations in m.p. across a period Patterns : increases steadily from group 1A to 3A, reaching a maximum in group 4A drops sharply from group 4A to 5A, and eventually reaching a minimum in group 0 30 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : m.p. from group 1A to 3A because (i) the no. of outermost electrons involved in metallic bonds from 1 to 3 strength of bond accordingly Boron giant covalent 31 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : m.p. from group 1A to 3A because (ii) Packing efficiency : Gp2A/3A(hcp/fcc) > Gp1A(bcc) 32 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : Gp4A elements(C & Si) giant covalent Covalent bonds are highly directional Metallic bonds are non-directional Extent of bond breaking on melting Covalent >> metallic 33 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : - * C sublimes at 1 atm For metals, the differences between m.p. and b.p. are great ∵ extent of bond breaking : boiling >> melting Particles are completely separated on boiling For Gp4A elements, the differences between m.p. and b.p. are relatively small ∵ extent of bond breaking : boiling melting 34 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : Sharp in m.p. from Gp4A to Gp5A because Covalent bond(Gp4A) >> van der Waals forces(Gp5A) 35 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : m.p. of Mg m.p. of Al ∵ only an average of TWO outermost shell electrons per atom of aluminium participate in the formation of metallic bonds 36 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : m.p. : N > O > F > Ne (regular) ∵ molecular size : N2 > O2 > F2 > Ne Strength of v.d.w. forces : N2 > O2 > F2 > Ne 37 Element Li Be B C N O F Ne Melting point / oC 181 1287 2076 3527* 210 219 220 249 Boiling point / oC 1342 2469 3927 4027* 196 183 188 246 Element Na Mg Al Si P(white) S Cl Ar Melting point / oC 98 650 660 1414 44 115 101 189 Boiling point / oC 883 1090 2517 2900 277 444 34 186 Interpretation : m.p. : S > P > Cl > Ar (irregular) ∵ molecular size : S8 > P4 > Cl2 > Ar Strength of v.d.w. forces : S8 > P4 > Cl2 > Ar 38 Atoms of elements in period 2 tend to form multiple bonds (double or triple) with one another. Examples : O=O (1 + 1), NN (1 + 2) 39 Atoms of elements in period 3 do not form multiple bonds with one another. Instead, they form cyclic structure in which all bonds are bonds. S S S S S S8 S S P S P P P P4 bond formation is not favoured due to poor side-way overlap between 3p orbitals 40 Q.2 O O Si C O O O O O O Si O O O C O Each Si atom forms four single bonds rather than two double bonds with O atoms (∵ poor 3pz-2pz overlap) 41 O O Si C O O O O O O Si O O O C O C=O is preferred to C-O because 1. 2pz-2pz overlap > 3pz-2pz overlap 2. Polarization of bond (mesomeric effect) results in stronger double bond B.E. (kJ mol1) : C=O(749) > 2C-O(358) 42 Giant covalent O O Si C O O O O O O Si O O O C O Simple molecular 43 B. Variation in m.p. down a group 44 For metals in Gp1A/2A/3A, m.p. down the group. It is because ionic radius down the group charge the charge density, of positive ion size down the group the electrostatic forces of attraction between the positive metal ions and the delocalized electrons down the group the strength of metallic bond down the group 45 For Gp 4A elements, m.p. down the group C(3527) Si(1414) Ge(937) Sn(230) Pb(327) 46 For Gp 4A elements, m.p. down the group ∵ atomic radius down the group Extent of orbital overlap down the group Strength of covalent bond down the group Sn and Pb are metals and thus have exceptionally low m.p. due to less extensive breaking of metallic bonds 47 C(3527) Si(1414) Ge(937) Sn(230) Pb(327) For Groups 6A/7A elements m.p. down the group F(-220) ∵ Size of molecules down the group Extent of polarization of electron cloud down the group Cl(-101) Strength of London dispersion forces Br(-7.2) down the group I(114) 48 Atomic radius Refer to notes on ‘Electronic structure of atoms and the periodic table’, pp.25-27 49 Atomic radius Atomic radius when ENC ENC depends on 1. Nuclear charge 2. Screening effect of electrons (repulsion among electrons) 50 For the first 2 or 3 elements, atomic radius more significantly because nuclear charge sharply 51 Then, atomic radius less sharply because screening effect is getting more important 52 First ionization enthalpy Refer to notes on ‘Electronic structure of atoms and the periodic table’, pp.27-28 53 First ionization enthalpy 54 Variation in the first ionization enthalpy of the first 20 elements Electronegativity Refer to notes on ‘Bonding and structure’, pp.2, 65 55 Electronegativity Increases when atomic size 56 Decreases when atomic size Electronegativity Electronegativity cannot be measured directly 57 Not a physical properties Variation in electronegativity values of the first 20 elements 58 Periodic Relationship among the Oxides of the Elements Li to Cl 59 1. Bonding and Stoichiometric Composition Li2O Na2O Na2O2 BeO MgO B2O3 Al2O3 CO CO2 SiO2 N2O NO N2O3 O2, O3 NO2 N2O4 N2O5 P4O6 P4O10 SO2 SO3 OF2 Cl2O ClO2 Cl2O6 Cl2O7 Ionic and Amphoteric Covalent and mainly basic acidic 60 2. Reactions with water, acids and alkalis A. Ionic oxide (basic oxide) Li2O and Na2O react vigorously with water to give alkaline solutions Li2O(s) + H2O(l) 2Li+(aq) + 2OH(aq) Na2O(s) + H2O(l) 2Na+(aq) + 2OH(aq) O2-(aq) stronger base 61 + H O H 2 OH-(aq) weaker base 2. Reactions with water, acids and alkalis A. Ionic oxide (basic oxide) MgO reacts slowly with water giving a slightly alkanline solution MgO(s) + H2O(l) Mg(OH)2(s) Mg(OH)2(s) Mg2+(aq) + 2OH(aq) High Lattice enthalpies low solubility and slight dissociation Equilibrium position lies on the left 62 2. Reactions with water, acids and alkalis A. Ionic oxide (basic oxide) Na and K form more than one kind of oxides 63 Na2O sodium oxide Na2O2 sodium peroxide KO2 superoxide 2. Reactions with water, acids and alkalis A. Ionic oxide (basic oxide) 2Na2O2(s) + 2H2O(l) 4NaOH(aq) + O2(g) 4KO2(s) + 2H2O(l) 4KOH(aq) + 3O2(g) 64 Q.3(i) Na+ and K+ have small charge density (small charge and large size) They cannot polarize or distort the unstable O22, O2 [O – O]2 65 Q.3(i) Li+ has a high charge density It is polarizing enough to distort the electron cloud of O22, causing it to decompose to give Li2O. Li+ Li+ 2Li2O [O – O]2 Li+ 66 Li+ Q.3(ii) Gp 2 ions has smaller size and greater charge High charge density and polarizing power Polarize more the electron cloud of O22 Gp 2A metals do not form peroxides 67 B. Ionic oxide with high covalent character (Amphoteric oxides) BeO(s) + H2O(l) Al2O3(s) + H2O(l) 68 Do not dissolve nor react due to high lattice enthalpies of oxides B. Ionic oxide with high covalent character (Amphoteric oxides) BeO(s) + 2H+(aq) Be2+(aq) + H2O(l) base BeO(s) + 2OH(aq) + H2O(l) Be(OH)42(aq) acid beryllate Al2O3(s) + base 6H+(aq) 2Al3+(aq) + 3H2O(l) Al2O3(s) + 2OH(aq) + 3H2O(l) 2Al(OH)4(aq) acid aluminate 69 C. Covalent oxides (acidic oxides) 1. B2O3 B2O3(s) + 3H2O(l) 2H3BO3(aq) OH O B O B B O HO OH Boric acid or orthoboric acid 70 H3BO3 are held by extensive intermolecular hydrogen bonds A solid at room conditions 71 Thermal dehydration of H3BO3 1. Intramolecular H O H 100oC B O O H 72 HO B O + H2O(l) HBO2 metaboric acid Thermal dehydration of H3BO3 2. Intermolecular 160C H2B4O7 tetraboric acid 73 Q.4 Borax(硼砂), Na2B4O7, is used as a preservative and in the making of borax glass. Draw the structural formula of borax. O Na O B B O 74 O O B B O O Na 2. CO2, CO, SiO2 CO2 reacts with water to give a weak acid which ionizes in two steps to give a weakly acidic solution. CO2(g) + H 2O(l) 75 H 2CO3(aq) H2CO3(aq) + H 2O(l) H 3O+(aq) + HCO 3-(aq) HCO3-(aq) + H 2O(l) H 3O+(aq) + CO 32-(aq) H - O + C - O + H O -O C H + O O H H2CO3 carbonic acid 76 CO(g) + H2O(l) no reaction SiO2(s) + H2O(l) no reaction SiO2 is insoluble in water due to the high lattice energy of the giant covalent structure SiO2(l) + 2NaOH(l) Na2SiO3 + H2O acidic Sodium silicate Water glass CO2(g) + 2NaOH(aq) Na2CO3 + H2O Sodium carbonate 77 3. Oxides of nitrogen Nitric acid N2O5(s) + H2O(l) 2HNO3(aq) N2O4(g) + H2O(l) HNO3(aq) + HNO2(aq) N2O3(g) + H2O(l) 2HNO2(aq) Nitrous acid Acid anhydrides NO(g) + H2O(l) no reaction N2O(g) + H2O(l) no reaction Nitric oxide (NO(g)) and nitrous oxide (N2O(g)) are neutral and insoluble in water 78 Q.5 +5 +5 N2O5(s) + H2O(l) 2HNO3(aq) +4 +5 +3 N2O4(g) + H2O(l) HNO3(aq) + HNO2(aq) +3 +2, +4 N2O3(g) + H2O(l) 2HNO2(aq) O N +3 O N +3 Not exist 79 O O N +2 +4 N O O N2O5(l) dinitrogen pentoxide N2O4(g) dinitrogen tetroxide NO2(g) nitrogen dioxide 80 O O N N O O O O O N N O O N O O N2O3(g) dinitrogen trioxide N O N O O NO(g) nitric oxide N2O(g) nitrous oxide 81 N 0 +2 N N O O -1 +3 N N O 3. Oxides of phosphorus O ~109 P 60 P O 3O2 P P P P4 White phosphorus P O ~109P O O 2O2 O P O P O P4O6 O P O O P O P O O O P4O10 White phosphorus burn spontaneously to relieved the angle strain 82 O 3. Oxides of phosphorus Reaction with water +5 P4O10 Q.6 83 +3 + 6H2O(l) P4O6 + 6H2O(l) +5 4H3PO4(aq) +5 -3 3H3PO4(aq) + PH3(g) Thermal dehydration of H3PO4 (i) Intermolecular dehydration 2H3PO4 O HO HO 250oC H2O + H4P2O7 (pyrophosphoric acid) O P P OH HO O O P P 250C OH OH HO HO O + H2O 84 OH OH Thermal dehydration of H3PO4 (ii) Intramolecular dehydration H3PO4 900oC H2O + HPO3 (metaphosphoric acid) O O 900C HO HO 85 P P OH O OH + H2O Q.8 Draw the structure of phosphorous acid, H3PO3 O +4 HO P OH Dibasic acid H 0 What is the oxidation number of phosphorus in phosphorous acid? 86 O H3PO2 +3 HO 87 Hypophosphorous acid P H H Monobasic acid Formation of sodium salts H3PO4 is tribasic 3 kinds of sodium salts H3PO4 + NaOH H2O + NaH2PO4 sodium dihydrogenphosphate NaH2PO4 + NaOH H2O + Na2HPO4 disodium hydrogenphosphate Na2HPO4 + NaOH H2O + Na3PO4 sodium phosphate 88 Dehydration of sodium salts 1. Inter-dehydration 2Na2HPO4 H2O + Na4P2O7 tetrasodium pyrophosphate 2. Intra-dehydration NaH2PO4 H2O + NaPO3 sodium metaphosphate 89 Q.9 + Na -O + Na -O O O P P OH HO O-Na + O-Na + + Na -O + Na -O O O P P O Na4P2O7 O P + - Na O OH OH O + Na -O P O NaPO3 90 O-Na + O-Na + 4. Oxides of oxygen and sulphur O2 is neutral and only slightly soluble in water SO2 reacts with water to give sulphurous acid which ionizes in two steps to give a weakly acidic solution. SO2(g) + H 2O(l) 91 H 2SO3(aq) H2SO3(aq) + H 2O(l) H 3O+(aq) + HSO 3-(aq) HSO3-(aq) + H 2O(l) H 3O+(aq) + SO 32-(aq) SO3 reacts with water to give sulphuric acid which ionizes in two steps to give a strongly acidic solution. SO3(g) + H 2O(l) 92 H 2SO4(aq) H2SO4(aq) + H 2O(l) H 3O+(aq) + HSO 4-(aq) HSO4-(aq) + H 2O(l) H 3O+(aq) + SO 42-(aq) O + S O O 93 O H + O S H + O OH OH O O O S S SO3 S O O OH OH H2SO3 94 O OH OH H2SO4 S O O SO2 5. Oxides of chlorine and fluorine* * F2O is oxygen difluoride rather than difluorine monoxide F2O may react slowly with water, giving oxygen gas and a slightly acidic solution. F2O(g) + H2O(l) 2HF(aq) + O2(g) - F +O -F 95 H + 2H–F + O=O - O H + Cl2O(g) + H2O(l) 2HOCl(aq) + H O + Cl Cl + O - - F +O -F 96 H+ 2H–O–Cl H + 2H–F + O=O - O H + +1 +1 Cl2O(g) + H2O(l) 2HOCl(aq) hypochlorous acid chloric(I) acid +4 +5 +3 2ClO2(g) + H2O(l) HClO3(aq) + HClO2(aq) chlorous acid chloric(III) acid +6 +7 +5 Cl2O6(l) + H2O(l) HClO4(aq) + HClO3(aq) chloric acid chloric(V) acid +7 +7 Cl2O7(l) + H2O(l) 2HClO4(aq) perchloric acid chloric(VII) acid 97 3-electron bond ClCl O Cl Cl Cl2O 98 O O OO ClO 2 O O O Cl Cl O O Cl2O6 O O O Cl O O O Cl O Cl2O7 O Q.10 ClCl O Cl a Cl OO OO bb b>a Repulsion between a double bond and a 5-electron centre > Repulsion between two single bonds The strong repulsion between two lone pairs in Cl2O decreases the bond angle a 99 Q.11 Cl O H O Cl O HOCl HClO2 O O Cl Cl OH HClO3 100 HO O OH O HClO4 Q.12 HClO4 > HClO3 > HClO2 > HOCl Explanation : - HClOx ClO Average charge on each O Attraction for H+ Ease of leaving of H+ Acid strength 101 -1 ClOx + H+ ClO2 ClO3 -½ decreases increases increases 1 -3 ClO4 -¼ Q.12 HClO4 > HClO3 > HClO2 > HOCl No. of O atoms bonded to Cl atom Cl atom becomes more positively charged better electron pair acceptor stronger Lewis acid 102 The END 103 38.1 The Periodic Table (SB p.3) The atomic numbers of tellurium and iodine are 52 and 53 respectively. Why is tellurium heavier than iodine? Answer Atomic number of an element is not related to the mass of an atom of the element. The atomic number of an element is the number of protons in an atom of the element. It is unique for each element. The mass of an atom of the element is mainly determined by the number of protons and neutrons in the nucleus. Therefore, tellurium is heavier than iodine though the atomic number of tellurium is smaller than that of iodine. Back 104 38.1 The Periodic Table (SB p.5) To which block (s-, p-, d- or f-) in the Periodic Table do rubidium, gold, astatine and uranium belong respectively? Answer Rubidium: s-block Gold: d-block Astatine: p-block Uranium: f-block Back 105 38.2 Periodic Variation in Physical Properties of Elements (SB p.6) Which element would have the highest first ionization enthalpy? Answer Helium Back 106 38.2 Periodic Variation in Physical Properties of Elements (SB p.8) Which element would have the smallest atomic radius? Answer Helium Back 107 38.2 Periodic Variation in Physical Properties of Elements (SB p.12) Why is the melting point of chlorine higher than argon? Answer Chlorine atom has a higher effective nuclear charge than argon atom, so the atomic radius of chlorine is smaller than that of argon. Therefore, the van der Waals’ forces between chlorine molecules are stronger than those between argon molecules. Since a higher amount of energy is needed to overcome the stronger van der Waals’ forces, the melting point of chlorine is higher than that of argon. Back 108 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) Considering the trend of atomic radius in the Periodic Table, arrange the elements Si, N and P in the order of increasing atomic radius. Explain your answer briefly. Answer In the Periodic Table, N is above P in Group VA. As the atomic radius increases down a group, the atomic radius of N is smaller than that of P. Si and P belong to the same period. Since the atomic radius decreases across a period, the atomic radius of P is smaller than that of Si. Therefore, the atomic radius increases in the order: N < P < Si. Back 109 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) (a) With the help of the Periodic Table only, arrange the elements selenium, sulphur and argon in the order of increasing first ionization enthalpies. Answer (a) The first ionization enthalpy increases in the order: Se < S < Ar. 110 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) (b) Describe and explain the general periodic trend of atomic radius of elements in the Periodic Table. Answer 111 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) (b) Within a given period, the atomic radii decrease progressively with increasing atomic numbers. This is because an increase in atomic number by one means that one more electron and one more proton are added in the atom. The additional electron would cause an increase in repulsion between the electrons in the outermost shell and results in an increase in atomic radius. The additional proton in the nucleus would cause the electrons to experience greater attractive forces from the nucleus. Due to the fact that the newly added electron goes to the outermost shell and is at approximately the same distance from the nucleus, the repulsion between the electrons is relatively ineffective to cause an increase in atomic radius. Therefore, the effect of increasing nuclear charge outweighs the effect of repulsion between the electrons. That means, there is an increase in effective nuclear charge. As a result, the atomic radii of elements decrease across a period. 112 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) (c) With reference to Fig. 38-9 on p.11 (variation in electronegativity value of the first 20 elements), explain why the alkali metals are almost at the bottom of the troughs, whereas the halogens are at the peaks of the plot. Answer 113 38.2 Periodic Variation in Physical Properties of Elements (SB p.13) (c) The alkali metals are almost at the bottom of troughs, indicating that they have low electronegativity values. It is because their nuclear charge is effectively shielded by the fully-filled inner electron shells of electrons, and the bonding electrons are attracted less strongly. On the other hand, the halogens appear at the peaks. This indicates that they have high electronegativity values. It is because they have one electron less than the octet electronic configuration. They tend to attract an electron to complete the octet, and the bonding electrons are attracted strongly. Back 114 39.1 Bonding of the Oxides of Periods 2 and 3 Elements (SB p.22) (a) To which type of oxide does each of the following oxides belong? (i) Magnesium oxide (ii) Nitrogen monoxide (iii) Silicon dioxide (iv) Aluminium oxide (a) (i) Ionic oxide (ii) Covalent oxide (iii) Covalent oxide (iv) Ionic oxide with covalent character 115 Answer 39.1 Bonding of the Oxides of Periods 2 and 3 Elements (SB p.22) (b) Carbon can form two oxides. Name the two oxides and draw their electronic structures. Answer (b) Carbon monoxide (CO): Carbon dioxide (CO2): Back 116 39.2 Behaviour of Oxides of Periods 2 and 3 Elements in Water, Dilute Acids and Dilute Alkalis (SB p.27) (a) Why does silicon(IV) oxide not react with water? (a) Silicon(IV) oxide does not react with water because the electronegativity values of silicon and oxygen are very similar. The Si — O bond can be considered as nonpolar, so there is no positive centre for the lone pair electrons of the water molecule to attack. 117 Answer 39.2 Behaviour of Oxides of Periods 2 and 3 Elements in Water, Dilute Acids and Dilute Alkalis (SB p.27) (b) Complete and balance the following equations: (i) K2O(s) + H2O(l) (ii) Na2O2(s) + HCl(aq) (iii) Al2O3(s) + H2SO4(aq) (iv) P4O10(s) + NaOH(aq) (v) SO3(g) + NaOH(aq) 118 Answer 39.2 Behaviour of Oxides of Periods 2 and 3 Elements in Water, Dilute Acids and Dilute Alkalis (SB p.27) (b) (i) K2O(s) + H2O(l) 2KOH(aq) (ii) Na2O2(s) + 2HCl(aq) 2NaCl(aq) + H2O2(aq) (iii) Al2O3(s) + 3H2SO4(aq) Al2(SO4)3(aq) + 3H2O(l ) (iv) P4O10(s) + 12NaOH(aq) 4Na3PO4(aq) + 6H2O(l) (v) SO3(g) + 2NaOH(aq) Na2SO4(aq) + H2O(l) Back 119