Download Ch 2 Review Sheet - Phillips Scientific Methods

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Light-dependent reactions wikipedia , lookup

Photosynthetic reaction centre wikipedia , lookup

Transcript
Chapter 2 Basic Chemistry Study Guide
NAME_____________________#____
2.1 Chemical Elements
1.
_____is defined as anything that takes up space and has mass.
2. Matter exists in three states (here on earth):______,_____, ____
3.
A. Elements
B.
1.
All matter (both living and non-living) is composed of 92 naturally-occurring_________.
2.
Elements, by definition, cannot be broken down to simpler substances with different
chemical or physical properties.
3.
Six elements (_________, ______, _________, ________ phosphorus, and sulfur—
acronym CHNOPS) make up 95% of the body weight of organisms.
Atoms
1.
Elements consist of tiny particles called _____
2. An atom is the smallest unit of an element that displays the properties of the element.
3. One or two letters (e.g., H, Na) create the ____ _____of the element
4. Atoms contain specific numbers ______, ______, _____. Protons are positively
charged particles; neutrons have no charge; electrons are negatively charged particles
located in orbitals outside the nucleus.
5. Protons and neutrons are in the nucleus of an atom; electrons move around the nucleus.
C.
Atomic Mass and Atomic Number
1.
The _______ ____of an atom depends on the presence of certain subatomic particles.
2. Atomic mass is the sum of protons and neutrons
3. Protons and neutrons have one atomic mass unit (amu of weight); electrons have zero.
4.
All atoms of an element have the same number of protons, called the ____ _____of
the element.
D. The Periodic Table
1.
The periodic table shows how various characteristics of atoms of elements recur.
2. ______are the vertical columns in the table, ______are the horizontal rows; atomic
mass increases as you move down a group or across a period.
3. The atomic number is above the atomic symbol and the atomic mass is below the atomic
symbol.
E.
Isotopes
1.
______are atoms of the same element that differ in the number of neutrons (and
therefore have different atomic masses). For example, carbon-12 has 6 protons and 6
neutrons, carbon-14 has 6 protons and 8 neutrons.
2. A carbon atom with 8 rather than 6 neutrons is unstable; it releases energy and
subatomic particles and is thus a___________ ________.
3. Because the chemical behavior of a radioactive isotope is the same as a stable isotope
of a particular element, low levels of the radioactive isotope (e.g., radioactive iodine or
glucose) allow researchers to trace the location and activity of the element in living
tissues; these isotopes are called tracers.
1
4. High levels of radiation can destroy cells and cause cancer; careful use of radiation can
sterilize products and kill cancer cells.
F.
Electrons and Energy
1.
Electrons occupy orbitals within various ______ _____(or electron shells) near or
distant from the nucleus of the atom. The farther the orbital from the nucleus, the
higher the energy level.
2. An orbital is a volume of space where an electron is most likely to be found; an orbital
can contain no more than__electrons.
3. When atoms absorb energy during photosynthesis, electrons are boosted to higher
energy levels. When the electrons return to their original energy level, the released
energy is converted into chemical energy. This chemical energy supports all life on
Earth.
4. The innermost shell of an atom is complete with 2 electrons; all other shells are
complete with 8 electrons. This is called the _____ ______
5. Atoms will give up, accept, or share electrons in order to have 8 electrons in an electron
shell.
2.2
Compounds and Molecules
1.
When atoms of two or more different elements bond together, they form a _____(e.g.,
H2O).
2. A ______is the smallest part of a compound that has the properties of the compound,
and must be covalently bonded.
3.
A ______tells you the number of each kind of atom in a molecule (ex. Glucose, C 6H12O6)
4. Electrons possess____, and ____that exist between atoms in molecules therefore
contain energy.
A. Ionic Bonding
1.
An ______bond forms when electrons are transferred from one atom to another atom.
2. By losing or gaining electrons, atoms fill outer shells, and are more stable (the octet
rule).
3. Example: sodium loses an electron and therefore has a positive charge; chlorine gains an
electron to give it a negative charge. Such charged particles are called___. A positive
ion is called a ______; negative ions are called ______.
4. Attraction of oppositely charged ions holds the two atoms together.
5. A ____(e.g., NaCl) is an example of an ionically-bonded compound.
B. Covalent Bonding
1.
________bonds result when two atoms share electrons so each atom has an octet of
electrons in the outer shell (or, in the case of hydrogen, 2 electrons).
2. Hydrogen can give up an electron to become a hydrogen ion (H +) or share an electron
with another atom to complete its shell with 2 electrons.
3. The _______ _______of a compound indicates a shared pair of electrons by a line
between the two atoms; e.g., single covalent bond (H–H), double covalent bond (O=O),
and triple covalent bond (N = N). Each line between the atoms represents a pair of
electrons.
2
C.
Nonpolar and Polar Covalent Bonds
1.
In ______covalent bonds, sharing of electrons is equal, i.e., the electrons are not
attracted to either atom to a greater degree.
2. With ______covalent bonds, the sharing of electrons is unequal.
a.
In a water molecule (H2O), sharing of electrons by oxygen and hydrogen is not equal;
the oxygen atom with more protons attracts the electrons closer to it, and thus
dominates the H2O association.
b. Attraction of an atom for electrons in a covalent bond is called the _________of
the atom; an oxygen atom is more electronegative than a hydrogen atom.
c. Oxygen in a water molecule, more attracted to the electron pair, assumes a partial
negative charge.
2.3. Chemistry of Water
1.
The shape of water and of all organic molecules is necessary to the structural and
functional roles they play in living things.
2. A _________bond is the attraction of a slightly positive hydrogen to a slightly negative
atom in the vicinity.
A. Hydrogen Bonding
1.
A hydrogen bond is a weak attractive force between the slightly _____charge of the
hydrogen atom of one molecule and slightly_______ charge of another atom (e.g.,
oxygen, nitrogen) in another or the same molecule.
2. Many hydrogen bonds taken together are relatively strong.
3. Hydrogen bonds between and within complex biological molecules (e.g., DNA, proteins)
help maintain their proper structure and function.
B. Properties of Water
1.
Water has a _____heat capacity
a.
The temperature of liquid water rises and falls more slowly than that of most other
liquids.
b. A calorie is the amount of heat energy required to raise the temperature of one
gram of water 1º C.
c.
Because the hydrogen bonds between water molecules hold more heat, water’s
temperature falls more slowly than other liquids; this protects organisms from
rapid temperature changes and helps them maintain homeostatic temperature.
2. Water has a high______ __ __________.
a.
When water boils, it evaporates, or vaporizes into the environment.
b. Hydrogen bonds between water molecules require a relatively large amount of heat
to break.
c.
This property moderates Earth’s surface temperature; permits living systems to
exist.
d. When animals sweat, _______of the sweat removes body heat, thus cooling the
animal.
3. Water is the universal __________.
3
a.
b.
c.
Water dissolves a great number of substances (e.g., salts, large polar molecules).
A solution contains dissolved substances called____.
Ionized or polar molecules attracted to water are ______(“water loving”).
d.
Nonionized and nonpolar molecules that cannot attract water are ______(“water
fearing”).
4. Water molecules are cohesive and adhesive.
a.
______allows water to flow freely without molecules separating.
b. _______is ability to adhere to polar surfaces; water molecules have positive and
negative poles.
c.
Water rises up a tree from roots to leaves through small tubes.
1) Adhesion of water to walls of vessels prevents water column from breaking
apart.
2) Cohesion allows evaporation from leaves to pull water column from roots.
d. Water has a ____ _____ ______ and is relatively difficult to break through at its
surface.
1) This property permits a rock to be skipped across a pond surface, and supports
insects walking on surface.
5. Unlike most substances, frozen water (ice) is ____dense than liquid water.
a.
Below 4º C, hydrogen bonding becomes more rigid but more open, causing expansion.
b. Because ice is less dense, it floats; therefore, bodies of water freeze from the top
down.
a.
If ice was heavier than water, ice would sink and bodies of water would freeze solid.
b. This property allows ice to act as an insulator on bodies of water, thereby
protecting aquatic organisms during the winter.
2.4. Acids and Bases
1.
When water ionizes or dissociates, it releases a small (1 x 107 moles/liter) but equal
number of hydrogen (H+) ions and hydroxide (OH-) ions; H – O –H → H+ + OH-.
2. Acid molecules dissociate in water, releasing _____ions: HCl → H+ + Cl-.
3. Bases are molecules that take up hydrogen ions or release ______ions. NaOH → Na+ +
OH-.
4. The __ ______indicates acidity and basicity (alkalinity) of a solution.
A. pH is the measurement of free hydrogen ions, expressed as a negative logarithm of
the H+ concentration (-log [H+]).
B. pH values range from __ (1 x 100 moles/liter; most acidic) to___ (1 x 10-14
moles/liter; most basic).
1) One mole of water has 1 x 10-7 moles/liter of hydrogen ions; therefore, has
neutral pH of__
2) An acid is a substance with pH ____than 7; a base is a substance with pH
_____than 7.
4
3) Because it is a logarithmic scale, each lower unit has 10 times the amount of
hydrogen ions as next higher pH unit; as move up pH scale, each unit has 10
times the basicity of previous unit.
5. _______keep pH steady and within normal limits in living organisms..
a.
Buffers stabilize pH of a solution by taking up excess ________ (__) or hydroxide
(OH-) ions.
b. Carbonic acid helps keep blood pH within normal limits: H 2CO3 → H+ + HCO3-.
A. The Harm Done by Acid Deposition (Ecology Focus box)
1.
2.
3.
4.
5.
_____ ______ is rain or snow with pH < 5.0, and dry acidic particles that settle on
the Earth from the atmosphere.
The burning of fossil fuels increases the amount of acid deposition that falls from
the atmosphere to the Earth.
Impact of Lakes
a. Aluminum is leached from the soil converts mercury deposits to methyl mercury,
which is toxic and accumulates in fish.
Impact on Forests
a. Acid rain damages plant leaves so they cannot conduct photosynthesis.
b. Acid rain stresses plants and they are then more susceptible to disease and
pests.
c. When toxins are leached into the soil, the toxins can kill vital soil fungi that help
roots absorb nutrients.
Impact on Humans and Structures
a. Inhaling dry acidic particles can increase the chance of respiratory illnesses
such as asthma.
5