Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Corso di Farmacologia 2005 FARMACI DEL SISTEMA RENINA-ANGIOTENSINA-ALDOSTERONE ANTAGONISTI DELLA RENINA INIBITORI DELL’ENZIMA DI CONVERSIONE (ACE-Inibitori) ANTAGONISTI DEI RECETTORI AT-1 (Sartani) DIURETICI ANTI-ALDOSTERONICI FARMACI DEL SISTEMA RENINA-ANGIOTENSINA-ALDOSTERONE Angiotensin Converting Enzyme -ACE Inibitori della renina Angiotensinogeno ACE-inibitori Angiotensina I Angiotensina II renina Beta-bloccanti AT1-antagonisti (Sartani) recettore AT1 Spironolattone Canrenone aldosterone vasocostrizione Sviluppo degli inibitori della renina Enalkiren Remikiren J.Clin.Pharmacol. 1994, 34: 873 INIBITORI DELLA RENINA Gli inibitori della renina sono molecole “modellate” sull’angiotensinogeno umano che bloccano l’azione della renina sul substrato legandosi in maniera competitiva al sito attivo della renina al quale rimangono legati senza subire alcun attacco enzimatico (falsi substrati). Enalkiren Ramikiren Aliskiren Zankiren TEPROTIDE – BRADYCHININ POTENTIATING FACTOR (Ferreira) The 1998 National Medal of Technology, Scientific American, March 1999 Angiotenin II receptor antagonists. Lancet 355, 637, 2000 Legame del Captopril all’ACE Zn++ O C Zn++ SH O N OH O ACE-I carbossilici ACE Zn++ Esterasi plasmatiche Enalapril Enalaprilat ACE-I fosforilici ACE Zn++ O O P N O O HO O Principali caratteristiche farmacocinetiche degli ACE inhibitori Captopril Enalapril Lisinopril Ramipril Quinapril Fosinopril Binding site -SH -COOH -COOH -COOH -COOH -POOH Prodrug No Yes Yes Yes Yes Yes Protein Binding % 25 50 10 56 97 96 Elimination GF/TS GF/TS GF GF/TS R R/H Dose 50-150 5-40 5-40 5-20 5-40 10-40 tmax (h) 0.5-1.5 3-4 6-7 1.5-3 1.5-2 3 tslow (h) - 30-50 30 110 - 12 0.25-0.5 1-4 1-2 0.5-2 1-2 1-2 3-12 12-30 18-30 24 24 24 b.(t.)d. o.(b.)d. o.d. o.d. o.(b.)d. o.d. Peak effect (h) Duration Frequency Heart Brain Adrenal gland Kidney Karl T. Weber, M.D. NEJM 345,1689, 2001 Angiotensinogen NH2-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-SerRenin Angiotensin I NH2-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-COOH Angiotensin II Bradykinin Converting enzyme (ACE) (Chimase) NH2-Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-COOH Aminopeptidase Angiotensin III NH2-Arg-Val-Tyr-Ile-His-Pro-Phe-COOH Inactive Fragments ACE-I ANG II Vascular wall Kidney Adrenal gland VASODILATATION ALDOSTERONE Na+ excretion Heart Brain INOTROPIC, SYMPATHETIC CHRONOTROPIC TONE ACTIONS BLOOD PRESSURE Sistema renina-angiotensina (RAS) Ditribuzione dell‘ACE nell‘organismo: 10 % RAS 90 % circolante (plasma) locale (tessuto) Effetti immediati Effetti a lungo termine cardiovascolari/ omeostasi renale mod. sec Dzau V, Arch Intern Med 153 (1993) „adattamento“ locale dell‘organo Attivazione rene-indipendente Effetti farmacodinamici degli ACE-I Effetti ormonali Diminuzione Aumento Angiotensina II plasmatica Angiotensina I Aldosterone plasmatico Renina Kallicreina urinaria Kinine urinarie Effetti emodinamici Diminuzione Aumento Resistenze periferiche Gettata cardiaca Pressione arteriosa Flusso ematico regionale Flusso ematico renale ACE-Inibitori ed ipertensione sistema adrenergico ACE-I aldosterone dilatazione arteriole bradichinina prostaglandine vasorilascianti resistenze vascolari sistemiche pressione arteriosa L’effetto ipotensivo degli ACE-I è potenziato in condizioni di elevata renina L’effetto ipotensivo degli ACE-I e potenziato dall’associazione con diuretici tiazidici Captopril o Idroclorotiazide da soli Terapia combinata Captopril o Idroclorotiazide da soli Terapia combinata Change in left ventricular mass (LVM) with antihypertensive treatment 0 Hydrochlorothiazide Change in LVM (g) -10 -20 -30 Enalapril -40 -50 -60 10 100 1000 Duration of treatment (days) Modified from Dahlof, Hansson J Hypertens 1992, 10:1513-24 Ang II-induced signal varies from seconds (e.g. activation of phospholipase C (PLC), generation of inositol phosphate and Ca2+ release) to minutes (e.g. mitogen-activated protein (MAP) kinase activation) to hours (e.g. activation of Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathway). ANGIOTENSIN II Altered Peripheral Resistance 1. Direct Vasoconstriction 2. Enhancement of peripheral noradrenergic neurotransmission 3. Increased sympathetic discharge 4. Release of catecholamines from adrenal medulla Rapid Pressor Response Altered Renal Function 1. Direct increase of Na reasbsorption in prox tubule 2. Release of aldosterone from adrenal cortex 3. Altered hemodynamics: • vasoconstriction • Increased NA control on kidney Slow Pressor Response Altered Cardiovascular Structure 1. Non-hemodinamically mediated effects: A. Expression of proto-oncogenes B. Release of Growth Factors C. Synthesis of extracellular matrix 2. Hemodinamically mediated effects: A. Increased afterload B. Increased preload Vascular and cardiac hypertrophy and remodeling L’angiotensina II è un fattore umorale co-responsabile dei processi di rimodellamento patologico Central role of myocardial remodeling in the pathophysiology of heart failure Hemodynamic overload Secondary biologic response Myocardial remodeling Myocardial dysfunction Hemodynamic overload (e.g., due to myocardial injury) serves as the primary stimulus for myocardial remodeling. With the development of myocardial dysfunction, there is an activation of secondary biologic responses, including the stimulation of systemic neurohormonal systems (e.g., renin-angiotensin and sympathetic nervous systems) and expression of myocardial peptides (e.g., endothelin, angiotensin, inflammatory cytokines) that can act directly on the myocardium to cause further remodeling Initially, cardiac hypertrophy represents a beneficial adaptative process, allowing the myocardial wall stress to be kept constant despite increased afterload caused by long-standing hypertension. With time, however, the hypertrophic response becomes deleterious and cardiomyopathy progressively develops, as reflected by aa reduced myocardial contractility ….. Left ventricular hypertrophy has evolved as a powerful predictor of sudden death. Normal Compensatory hypertrophy Dilated cardiomyopathy ANG II RIMODELLAMENTO VASCOLARE ACE-I RIMODELLAMENTO CARDIACO ACE-I SURVIVAL 0.8 0.7 Placebo 0.6 PROBABILITY 0.5 OF 0.4 DEATH p< 0.001 p< 0.002 0.3 Enalapril 0.2 0.1 CONSENSUS N Engl J Med 1987;316:1429 0 0 1 2 3 4 5 6 7 8 MONTHS 9 10 11 12 ACE-I SURVIVAL n = 2589 CHF - NYHA II-III - EF < 35 % MORTALITY 50 p = 0.0036 Placebo n=1284 40 30 Enalapril 20 n=1285 10 0 SOLVD (Treatment) 0 N Engl J M 1991;325:293 6 12 18 24 30 Months 36 42 48 Prostaglandina E2 Evoluzione della velocità di filtrazione glomerulare e della proteinuria in pazienti ipertesi non diabetici dopo instaurazione di terapia con ACE-Inibitori Principali indicazioni degli ACE-Inibitori Ipertensione Scompenso cardiaco Post-infarto Nefropatia diabetica e ipertensiva (microalbuminuria) Effetti indesiderabili degli ACE-I Ipotensione Iperkaliemia Edema angioneurotico Tosse secca e stizzosa Insufficienza renale ACE-I CONTRAINDICATIONS Renal artery stenosis Renal insufficiency Hyperkalemia Arterial hypotension Intolerance (due to side effects) ANTAGONISTS OF AT-1 receptors MECHANISM OF ACTION RENIN Angiotensinogen Other paths AT1 RECEPTOR BLOCKERS AT1 Vasoconstriction Angiotensin I ACE ANGIOTENSIN II RECEPTORS Proliferative Action AT2 Physio-pathological role ? Antagonisti dei Recettori AT-1 dell’Angiotensina II SARTANI Antagonisti competitivi e selettivi dei recettori AT-1 Losartan Valsartan Irbesartan Eprosartan Candesartan cilexetil Olmesartan medoxomil DIFFERENZE FRA ANTAGONISTI DEI RECETTORI AT1 Unger T. Am. J. Cardiol. 84, 95, 1999 DIFFERENZE FRA ANTAGONISTI DEI RECETTORI AT1 Unger T. Am. J. Cardiol. 84, 95, 1999 Trial ELITE II Lancet 355, 1582, 2000 EFFECT OF IRBESARTAN ON THE DEVELOPMENT OF DIABETIC NEPHROPATHY IN PATIENTS WITH TYPE 2 DIABETES Parving et al., NEJM 345:870 2001 INCIDENZA DI TOSSE Studio clinico in pazienti ipertesi con storia di tosse da ACE-inibitori Am. J. Hypert. 13, 214, 2000 Diuretici risparmiatori di potassio Cellula Principale LUME INTERSTIZIO Na+ Na+ Na+ ATP K+ Amiloride Triamterene Aldosterone NEFRONE DISTALE H+ H+ K+ ATP Recettore Spironolattone Canrenone Canrenoato di K H+ HCO3- HCO3- Cl- H2CO3 ATP A.C. CO2+H2O Cellula intercalare A INIBITORI DELL’ALDOSTERONE ALDOSTERONE Spironolattone antagonista competitivo dei recettori dell’aldosterone nel miocardio, parete vasale e rene • Ritenzione di NA+ • Ritenzione di H2O Edema •Escrezione di K+ •Escrezione di Mg2+ Aritmie Deposizione di collagene Fibrosi - miocardio - vasi PRODUZIONE DI ALDOSTERONE da parte delle cellule endoteliali e muscolari lisce dell’arteria coronarica intramiocardica Angiotensin II Karl T. Weber, M.D. NEJM 345,1689, 2001 Kaplan–Meier Analysis of the Probability of Survival among Patients in the Placebo Group and Patients in the Spironolactone Group. 1.00 0.95 0.90 Spironolactone 0.85 Probability of survival 0.80 0.75 0.70 Placebo P<0.001 0.65 0.60 0.55 0.50 0.45 0 3 6 9 12 15 18 21 24 27 30 33 36 Months The risk of death was 30 percent lower among patients in the spironolactone group than among patients in the placebo group (P<0.001).