* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lesson 1.2A Notes
List of important publications in mathematics wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Line (geometry) wikipedia , lookup
Elementary mathematics wikipedia , lookup
Recurrence relation wikipedia , lookup
Elementary algebra wikipedia , lookup
System of polynomial equations wikipedia , lookup
History of algebra wikipedia , lookup
Warm-up 1. Determine the x-intercept (s) and y-intercept from the graph below. Homework: Determine what this viewing rectangle illustrates. pg. 104, (1-45 odds) 2. [-20, 40, 5] by [-10, 30, 2] Problems 10-14 must 3. Solve this equation: 4x + 5 = 29 show checking your answer. Answers: 1. x-intercepts = (3,0) and (-7,0) y-intercept = (0,21) it’s a reflection 2. The x window’s min is at -20, max at 40 increasing in increments of 5. The y window’s min is at -10, max at 30 increasing in increments of 2. 3. x = 6 Announcements: Ch 1 Learning Goal: The student will be able to understand functions by solving and graphing all types of equations and inequalities. Today’s Objective: Be able to solve a rational equations with variables Lesson 1.2A Linear Equations and Rational Equations A linear equation in one variable x is an equation that can be written in the form of ax + b = 0, where a and b are real numbers and a 0. Steps for Solving a Linear Equation: 1. Simplify the algebraic expression on each side by removing grouping symbols and combining like terms. 2. Collect all the variable terms on one side and all the numbers, or constant terms, on the other side. 3. Isolate the variable and solve. 4. Check the proposed solution in the original equation. Example 1: Solving a Linear Equation Involving Fractions x 2 x 1 2 4 3 Given. x 2 x 1 12 2 12 3 4 Find LCD. 3(x+2)-4(x-1)=24 Solve by Distributive Property and combine like terms. 3x +6-4x+4 = 24 -x = 14 x = -14 Solve and check. You try these: 4(2x +1) = 29 + 3(2x -5) x3 5 x5 4 14 7 Answers: x = 5, x=1 Example 2: 1 1 3 x 5 2x 1 1 3 10 x 10 x x 5 2x 10 = 2x +15 x = -5/2 You Try: 5 17 1 2 x 18 3 x Answer: x = 3 Example 3: Solving Rational Equations Write problem. Objective – try to clear fractions. Multiply both sides by x 3 ( x 3) ( x 3) ( 9) (x-3) to cancel it out on the left x 3 x 3 side x 3 Distribute the (x-3) on the right ( x 3) ( x 3) ( ) ( x 3) 9 side x3 x3 Cross out the (x-3) to get rid of x 3 them in denominators x 3 9 x 3 x 3 ( x 3) x3 ( x 3) ( x3 ) 9( x 3) Example Continued X = 3 + 9(x-3) X = 3 + 9x – 27 X = 9x – 24 Simplify Distribute the 9 Subtract 3 and -27 Subtract 9x from both sides -8x = -24 X=3 Divide by -8. Unfortunately not a solution because of the excluded values. The solution is an empty set, 0 . You Try! x 2 2 x2 x2 3 Write problem x 2 2 3( x 2) 3( x 2) ( ) x 2 x 2 3 x 2 2 3( x 2) 3( x 2)( ) 3( x 2)( ) x 2 x 2 3 x 2 2 3( x 2) 3( x 2)( ) ( )3( x 2) x 2 x 2 3 3 x 6 ( 2 x 4) Multiply both sides by 3(x-2) Distribute the 3(x-2) to the right side Cancel out any 3(x-2) Multiply 3x 2 2 x 4 Distribute the negative 3x 6 2 x 4 Solve for x. 3 x 10 2 x Not a solution because of the excluded values. The solution is an empty set, 0 5 x 10 x 2 Summary: What is a rational equation? Give an example of this type of equation. Homework: WS1.1 pg. 104, (1-45 odd) Problems 10-14 must show checking your answer.