Download MTH55A_Lec-32_sec_7-3b_Factor_Radicals

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§7.3 Factor
Radicals
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Review § 7.3
MTH 55
 Any QUESTIONS About
• §7.3 → Multiply Radicals
 Any QUESTIONS About HomeWork
• §7.3 → HW-26
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Product Rule for Radicals
nnb ,
 For any real numbers nnaa and
and
and b ,
n a  n b  n a  b.
 That is, The product of two nth roots
is the nth root of the product of the
two radicands.
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Simplifying by Factoring
 The number p is a perfect square if
there exists a rational number q for
which q2 = p. We say that p is a
perfect nth power if qn = p for some
rational number q.
 The product rule allows us to
simplify n ab whenever ab contains
a factor that is a perfect nth power
Chabot College Mathematics
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Simplify by Product Rule
 Use The Product Rule in
REVERSE to Facilitate the
Simplification process
n ab  n a  n b
• Note that nnaa and
and nnbb must both be
and
real numbers
Chabot College Mathematics
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Simplify a Radical Expression
with Index n by Factoring
1. Express the radicand as a product
in which one factor is the largest
perfect nth power possible.
2. Take the nth root of each factor
3. Simplification is complete when
no radicand has a factor that is a
perfect nth power.
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify by Factoring
 Simplify by factoring (assume x > 0)
a)
b)
 SOLUTION → Match INDICES
a)
Chabot College Mathematics
7
b)
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify by Factoring
 Simplify by factoring (assume x > 0)
a)
b)
 SOLN a)
Note
That the
INDEX
is 3
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify by Factoring
 Simplify by factoring (assume x > 0)
a)
b)
 SOLN b) Note INDEX of 5
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify by Factoring
a) (assume
10 6 x, y > 0)
 Simplify by factoring
a)a) 10 6
b) 3 9 x3 y 2 3 9 x 4 y 7
b)
3 23 4 7
3
9 xa)y Note
9 x INDEX
y
 b)
SOLN
of 2
a)
10 6  60
 4 15
 2 15
Chabot College Mathematics
10
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify by Factoring
a) (assume
10 6 x, y > 0)
 Simplify by factoring
a)a) 10 6
b) 3 9 x3 y 2 3 9 x 4 y 7
b)
3 23 4 7
3
9 x 3y 3 92x 3 y 4 7 3
7 9
 b)
SOLN
b) 9 x y 9 x y  81x y
b)
Note
INDEX
of 3
 3 27  3  x6  x  y9
3 6 3 9 3
3
 27  x  y  3x
 3x 2 y3 3 3x
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify
 Simplify by factoring (assume w, z > 0)
5
 2wz
4 6 5
8w z
7
 4w z
5
6 9

 SOLN: First perform Distribution
• Note that all INDICES are common at 5
5
 2wz
4 6 5
8w z
 8w z
5
4 65
Chabot College Mathematics
12
7
 4w z
5
6 9
2wz  8w z
7
5

4 65
6 9
4w z
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify
 SOLN: Use Radical Product Rule
5
4 65
8w z

5
2wz  8w z
7
5
4 65
6 9
4w z
8w z  2wz   8w z  4w z 
4 6
7
5
4 6
6 9
 SOLN: Use Commutative Property of
Multiplication
8w z  2wz   8w z  4w z 
 8  2w  wz  z   8  4w  w z
4 6
5
5
Chabot College Mathematics
13
7
4
5
6
7
4 6
6 9
5
4
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
6
z
9

Example  Simplify
 SOLN: Exponent Product Rule
5
8  2w
4

 8  4w
w z z 
6
7
5
4

w z z
6
6
9

 5 16w41 z 67  5 32w4 6 z 69
 5 2 4 w5 z13  5 25 w10 z15
 SOLN: Next use Exponent POWER rule
to expose as many bases as possible
to the Power of 5; the Radical Index
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Example  Simplify
 SOLN: Power-to-Power Exponent Rule
5
2 wz  2 w z
4
5 13
5
10 15
 z
 16w z
5
5
5
2 5
3

5
2 w
5
 z 
2 5
3 5
 SOLN: Next Radical Product Rule
5
 z
16w z
5
 16 z 
5
3
2 5
5
Chabot College Mathematics
15
3
w
5


5
5
2 w
5
z 
2 5

 z 
2 5
5
3 5
2
5

5
w   z 
2 5
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
3 5
Example  Simplify
 SOLN: Perform 5th Root Operations
16 z 
5
3
5
w
5

5
z 
2 5

5
2
5

5
w   z 
2 5
5
3 5
 5 16 z 3  w  z 2  2  w2  z 3  2w2 z 3  wz 2 5 16 z 4
 SOLN: Finally Factor GCF = wz2
2w z  wz
2 3

25
16 z
3
 wz 2wz  16 z
2
Chabot College Mathematics
16
5
3

ANS
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
WhiteBoard Work
 Problems From
§7.3 Exercise Set
• 76, 80, 82, 92, 98

Adult
Cardiac
Index =
2.8-3.4
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
All Done for Today
Exponent
Rules are
NOT
Algebraic
Chabot College Mathematics
18
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
20
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
1
x
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
4
5
6
5
5
y
4
4
3
3
2
2
1
1
0
-10
-8
-6
-4
-2
-2
-1
0
2
4
6
-1
0
-3
x
0
1
2
3
4
5
-2
-1
-3
-2
M55_§JBerland_Graphs_0806.xls
-3
Chabot College Mathematics
21
-4
M55_§JBerland_Graphs_0806.xls
-5
Bruce Mayer, PE
[email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt
8
10
Related documents