Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chabot Mathematics §7.3 Factor Radicals Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot College Mathematics 1 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Review § 7.3 MTH 55 Any QUESTIONS About • §7.3 → Multiply Radicals Any QUESTIONS About HomeWork • §7.3 → HW-26 Chabot College Mathematics 2 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Product Rule for Radicals nnb , For any real numbers nnaa and and and b , n a n b n a b. That is, The product of two nth roots is the nth root of the product of the two radicands. Chabot College Mathematics 3 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Simplifying by Factoring The number p is a perfect square if there exists a rational number q for which q2 = p. We say that p is a perfect nth power if qn = p for some rational number q. The product rule allows us to simplify n ab whenever ab contains a factor that is a perfect nth power Chabot College Mathematics 4 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Simplify by Product Rule Use The Product Rule in REVERSE to Facilitate the Simplification process n ab n a n b • Note that nnaa and and nnbb must both be and real numbers Chabot College Mathematics 5 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Simplify a Radical Expression with Index n by Factoring 1. Express the radicand as a product in which one factor is the largest perfect nth power possible. 2. Take the nth root of each factor 3. Simplification is complete when no radicand has a factor that is a perfect nth power. Chabot College Mathematics 6 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify by Factoring Simplify by factoring (assume x > 0) a) b) SOLUTION → Match INDICES a) Chabot College Mathematics 7 b) Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify by Factoring Simplify by factoring (assume x > 0) a) b) SOLN a) Note That the INDEX is 3 Chabot College Mathematics 8 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify by Factoring Simplify by factoring (assume x > 0) a) b) SOLN b) Note INDEX of 5 Chabot College Mathematics 9 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify by Factoring a) (assume 10 6 x, y > 0) Simplify by factoring a)a) 10 6 b) 3 9 x3 y 2 3 9 x 4 y 7 b) 3 23 4 7 3 9 xa)y Note 9 x INDEX y b) SOLN of 2 a) 10 6 60 4 15 2 15 Chabot College Mathematics 10 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify by Factoring a) (assume 10 6 x, y > 0) Simplify by factoring a)a) 10 6 b) 3 9 x3 y 2 3 9 x 4 y 7 b) 3 23 4 7 3 9 x 3y 3 92x 3 y 4 7 3 7 9 b) SOLN b) 9 x y 9 x y 81x y b) Note INDEX of 3 3 27 3 x6 x y9 3 6 3 9 3 3 27 x y 3x 3x 2 y3 3 3x Chabot College Mathematics 11 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify Simplify by factoring (assume w, z > 0) 5 2wz 4 6 5 8w z 7 4w z 5 6 9 SOLN: First perform Distribution • Note that all INDICES are common at 5 5 2wz 4 6 5 8w z 8w z 5 4 65 Chabot College Mathematics 12 7 4w z 5 6 9 2wz 8w z 7 5 4 65 6 9 4w z Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify SOLN: Use Radical Product Rule 5 4 65 8w z 5 2wz 8w z 7 5 4 65 6 9 4w z 8w z 2wz 8w z 4w z 4 6 7 5 4 6 6 9 SOLN: Use Commutative Property of Multiplication 8w z 2wz 8w z 4w z 8 2w wz z 8 4w w z 4 6 5 5 Chabot College Mathematics 13 7 4 5 6 7 4 6 6 9 5 4 6 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 6 z 9 Example Simplify SOLN: Exponent Product Rule 5 8 2w 4 8 4w w z z 6 7 5 4 w z z 6 6 9 5 16w41 z 67 5 32w4 6 z 69 5 2 4 w5 z13 5 25 w10 z15 SOLN: Next use Exponent POWER rule to expose as many bases as possible to the Power of 5; the Radical Index Chabot College Mathematics 14 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Example Simplify SOLN: Power-to-Power Exponent Rule 5 2 wz 2 w z 4 5 13 5 10 15 z 16w z 5 5 5 2 5 3 5 2 w 5 z 2 5 3 5 SOLN: Next Radical Product Rule 5 z 16w z 5 16 z 5 3 2 5 5 Chabot College Mathematics 15 3 w 5 5 5 2 w 5 z 2 5 z 2 5 5 3 5 2 5 5 w z 2 5 5 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 3 5 Example Simplify SOLN: Perform 5th Root Operations 16 z 5 3 5 w 5 5 z 2 5 5 2 5 5 w z 2 5 5 3 5 5 16 z 3 w z 2 2 w2 z 3 2w2 z 3 wz 2 5 16 z 4 SOLN: Finally Factor GCF = wz2 2w z wz 2 3 25 16 z 3 wz 2wz 16 z 2 Chabot College Mathematics 16 5 3 ANS Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt WhiteBoard Work Problems From §7.3 Exercise Set • 76, 80, 82, 92, 98 Adult Cardiac Index = 2.8-3.4 Chabot College Mathematics 17 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt All Done for Today Exponent Rules are NOT Algebraic Chabot College Mathematics 18 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Chabot Mathematics Appendix r s r s r s 2 2 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] – Chabot College Mathematics 19 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt Graph y = |x| 6 Make T-table x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Chabot College Mathematics 20 5 y = |x | 6 5 4 3 2 1 0 1 2 3 4 5 6 y 4 3 2 1 x 0 -6 -5 -4 -3 -2 -1 0 1 2 3 -1 -2 -3 -4 -5 file =XY_Plot_0211.xls -6 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 4 5 6 5 5 y 4 4 3 3 2 2 1 1 0 -10 -8 -6 -4 -2 -2 -1 0 2 4 6 -1 0 -3 x 0 1 2 3 4 5 -2 -1 -3 -2 M55_§JBerland_Graphs_0806.xls -3 Chabot College Mathematics 21 -4 M55_§JBerland_Graphs_0806.xls -5 Bruce Mayer, PE [email protected] • MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 8 10