Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chabot Mathematics §9.4a Logarithm Rules Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot College Mathematics 1 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Review § 9.3 MTH 55 Any QUESTIONS About • §9.3 → Common & Natural Logs Any QUESTIONS About HomeWork • §9.3 → HW-45 Chabot College Mathematics 2 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Product Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the PRODUCT Rule log a MN log a M log a N That is, The logarithm of the product of two (or more) numbers is the sum of the logarithms of the numbers. Chabot College Mathematics 3 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Quotient Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the QUOTIENT Rule M log a log a M log a N N That is, The logarithm of the quotient of two (or more) numbers is the difference of the logarithms of the numbers Chabot College Mathematics 4 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Power Rule for Logarithms Let M, N, and a be positive real numbers with a ≠ 1, and let r be any real number. Then the POWER Rule loga M r log a M r That is, The logarithm of a number to the power r is r times the logarithm of the number. Chabot College Mathematics 5 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Product Rule Express as an equivalent expression that is a single logarithm: log3(9∙27) Solution log3(9·27) = log39 + log327. • As a Check note that log3(9·27) = log3243 = 5 35 = 243 • And that log39 + log327 = 2 + 3 = 5. 32 = 9 and 33 = 27 Chabot College Mathematics 6 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Product Rule Express as an equivalent expression that is a single logarithm: loga6 + loga7 Solution loga6 + loga7 = loga(6·7) = loga(42). Chabot College Mathematics 7 Using the product rule for logarithms Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Quotient Rule Express as an equivalent expression that is a single logarithm: log3(9/y) Solution log3(9/y) = log39 – log3y. Chabot College Mathematics 8 Using the quotient rule for logarithms Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Quotient Rule Express as an equivalent expression that is a single logarithm: loga6 − loga7 Solution loga6 – loga7 = loga(6/7) Chabot College Mathematics 9 Using the quotient rule for logarithms “in reverse” Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Power Rule Use the power rule to write an equivalent expression that is a product: a) loga6−3 b) log 4 x . Solution a) loga6−3 = −3loga6 Using the power rule for logarithms b) log 4 x = log4x1/2 = ½ log4x Chabot College Mathematics 10 Using the power rule for logarithms Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Use The Rules Given that log5z = 3 and log5y = 2, evaluate each expression. a. log 5 yz c. log 5 Solution z y b. log 5 125y 7 301 5 d. log 5 z y a. log 5 yz log 5 y log 5 z 23 5 Chabot College Mathematics 11 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Use The Rules Solution b. log 5 125y 7 log 125 log 5 5 y 7 log 5 5 3 7 log 5 y 3 7 2 17 Soln c. log 5 1 2 z z 1 log 5 log 5 z log 5 y y y 2 1 1 3 2 2 2 Chabot College Mathematics 12 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Use The Rules Soln 1 301 5 5 30 d. log 5 z y log 5 z log 5 y 1 log 5 z 5 log 5 y 30 1 3 5 2 30 0.1 10 10.1 Chabot College Mathematics 13 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Use The Rules Express as an equivalent expression using individual logarithms of x, y, & z x3 xy a) log 4 b) logb 3 yz z7 3 x 3 – log yz a) log = log x 4 Soln 4 4 yz a) = 3log4x – log4 yz = 3log4x – (log4 y + log4z) = 3log4x –log4 y – log4z Chabot College Mathematics 14 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Use The Rules 1/ 3 Soln xy xy 3 b) log logb b b) 7 7 z z 1 xy logb 3 z7 1 logb xy logb z 7 3 1 logb x logb y 7logb z 3 Chabot College Mathematics 15 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Caveat on Log Rules Because the product and quotient rules replace one term with two, it is often best to use the rules within parentheses, as in the previous example 1 xy logb 3 z7 1 logb x logb y 7logb z 3 Chabot College Mathematics 16 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Expand by Log Rules Write the expressions in expanded form x x 1 3 2 a. log 2 2x 1 4 3 2 5 b. log c x y z Solution a) 3 2 x x 1 3 4 2 a. log 2 4 log 2 x x 1 log 2 2x 1 2x 1 log 2 x log 2 x 1 log 2 2x 1 2 3 4 2 log 2 x 3log 2 x 1 4 log 2 2x 1 Chabot College Mathematics 17 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Expand by Log Rules 1 3 2 5 2 b. log c x y z log c x y z 3 2 5 Solution b) Chabot College Mathematics 18 1 log c x 3 y 2 z 5 2 1 3 2 5 log c x log c y log c z 2 1 3log c x 2 log c y 5 log c z 2 3 5 log c x log c y log c z 2 2 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Condense Logs Write the expressions in condensed form a. log 3x log 4y 1 b. 2 ln x ln x 2 1 2 c. 2 log 2 5 log 2 9 log 2 75 1 2 d. ln x ln x 1 ln x 1 3 Chabot College Mathematics 19 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Condense Logs Solution a) 3x a. log 3x log 4y log 4y Solution b) 1 b. 2 log x ln x 2 1 ln x 2 ln x 2 1 2 ln x Chabot College Mathematics 20 2 x 1 2 1 2 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Condense Logs Solution c) c. 2 log 2 5 log 2 9 log 2 75 log 2 5 log 2 9 log 2 75 2 log 2 25 9 log 2 75 25 9 log 2 75 log 2 3 Chabot College Mathematics 21 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Condense Logs Solution d) 1 d. ln x ln x 1 ln x 2 1 3 1 2 ln x x 1 ln x 1 3 1 x x 1 ln 2 3 x 1 x x 1 ln 3 2 x 1 Chabot College Mathematics 22 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Log of Base to Exponent For any Base a k log a a k . That is, the logarithm, base a, of a to an exponent is the exponent Chabot College Mathematics 23 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Example Log Base-to-Exp Simplify: a) log668 b) log33−3.4 Solution a) log668 =8 8 is the exponent to which you raise 6 in order to get 68. Solution b) log33−3.4 = −3.4 Chabot College Mathematics 24 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Summary of Log Rules For any positive numbers M, N, and a with a ≠ 1 log a ( MN ) log a M log a N ; log a M p p log a M ; M log a log a M log a N ; N k log a a k . Chabot College Mathematics 25 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Typical Log-Confusion Beware that Logs do NOT behave Algebraically. In General: log a ( MN ) (log a M )(log a N ), M log a M log a , N log a N log a ( M N ) log a M log a N , log a ( M N ) log a M log a N . Chabot College Mathematics 26 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt WhiteBoard Work Problems From §9.4 Exercise Set • 24, 30, 36, 58, 60 Condense Logarithm Chabot College Mathematics 27 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt All Done for Today Mathematical Association Log Poster Chabot College Mathematics 28 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt Chabot Mathematics Appendix r s r s r s 2 2 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] – Chabot College Mathematics 29 Bruce Mayer, PE [email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt