Download MTH55_Lec-62_sec_9-4a_Log_Rules

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§9.4a
Logarithm Rules
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Review § 9.3
MTH 55
 Any QUESTIONS About
• §9.3 → Common & Natural Logs
 Any QUESTIONS About HomeWork
• §9.3 → HW-45
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Product Rule for Logarithms
 Let M, N, and a be positive real
numbers with a ≠ 1, and let r be any real
number. Then the PRODUCT Rule
log a MN   log a M  log a N
 That is, The logarithm of the product of
two (or more) numbers is the sum of the
logarithms of the numbers.
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Quotient Rule for Logarithms
 Let M, N, and a be positive real
numbers with a ≠ 1, and let r be any real
number. Then the QUOTIENT Rule
M
log a    log a M  log a N
N
 That is, The logarithm of the quotient of
two (or more) numbers is the difference
of the logarithms of the numbers
Chabot College Mathematics
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Power Rule for Logarithms
 Let M, N, and a be positive real
numbers with a ≠ 1, and let r be any real
number. Then the POWER Rule
loga M  r log a M
r
 That is, The logarithm of a number to
the power r is r times the logarithm of
the number.
Chabot College Mathematics
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Product Rule
 Express as an equivalent expression
that is a single logarithm: log3(9∙27)
 Solution
log3(9·27) = log39 + log327.
• As a Check note that
log3(9·27) = log3243 = 5
35 = 243
• And that
log39 + log327 = 2 + 3 = 5. 32 = 9 and 33 = 27
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Product Rule
 Express as an equivalent expression
that is a single logarithm: loga6 + loga7
 Solution
loga6 + loga7 = loga(6·7)
= loga(42).
Chabot College Mathematics
7
Using the product
rule for logarithms
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Quotient Rule
 Express as an equivalent expression
that is a single logarithm: log3(9/y)
 Solution
log3(9/y) = log39 – log3y.
Chabot College Mathematics
8
Using the quotient
rule for logarithms
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Quotient Rule
 Express as an equivalent expression
that is a single logarithm: loga6 − loga7
 Solution
loga6 – loga7 = loga(6/7)
Chabot College Mathematics
9
Using the
quotient rule for
logarithms “in reverse”
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Power Rule
 Use the power rule to write an
equivalent expression that is a product:
a) loga6−3
b) log 4 x .
 Solution
a)
loga6−3
= −3loga6
Using the power
rule for logarithms
b) log 4 x = log4x1/2
= ½ log4x
Chabot College Mathematics
10
Using the power
rule for logarithms
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Use The Rules
 Given that log5z = 3 and log5y = 2,
evaluate each expression.
a. log 5 yz 
c. log 5
 Solution
z
y

b. log 5 125y 7
 301 5 
d. log 5  z y 


a. log 5 yz   log 5 y  log 5 z
 23
5
Chabot College Mathematics
11

Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Use The Rules

 Solution b. log 5 125y
7
 log 125  log
5
5
y
7
 log 5 5 3  7 log 5 y
 3  7 2   17
 Soln
c. log 5
1
2
 z
z
1
 log 5    log 5 z  log 5 y 
 y
y
2
1
1
 3  2  
2
2
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Use The Rules
 Soln
1
 301 5 
5
30
d. log 5  z y   log 5 z  log 5 y


1

log 5 z  5 log 5 y
30
1

3  5 2 
30
 0.1  10
 10.1
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Use The Rules
 Express as an equivalent expression
using individual logarithms of x, y, & z
x3
xy
a) log 4
b) logb 3
yz
z7
3
x
3 – log yz
a)
log
=
log
x
4
 Soln
4
4
yz
a)
= 3log4x – log4 yz
= 3log4x – (log4 y + log4z)
= 3log4x –log4 y – log4z
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Use The Rules
1/ 3
 Soln
xy
 xy 
3
b)
log
 logb  
b
b)
7
7
z 
z
1
xy
  logb
3
z7

1
 logb xy  logb z 7
3

1
  logb x  logb y  7logb z 
3
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Caveat on Log Rules
 Because the product and quotient
rules replace one term with two, it
is often best to use the rules within
parentheses, as in the previous
example
1
xy
  logb
3
z7
1
  logb x  logb y  7logb z 
3
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Expand by Log Rules
 Write the expressions in expanded form
x x  1
3
2
a. log 2
2x  1
4
3 2 5
b. log c x y z
 Solution a)
3
2
x x  1
3
4
2
a. log 2
4  log 2 x x  1  log 2 2x  1
2x  1
 log 2 x  log 2 x  1  log 2 2x  1
2
3
4
 2 log 2 x  3log 2 x  1  4 log 2 2x  1
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Expand by Log Rules

1
3 2 5 2
b. log c x y z  log c x y z
3 2 5
 Solution
b)




Chabot College Mathematics
18

1
log c x 3 y 2 z 5
2
1
3
2
5
log c x  log c y  log c z
2
1
3log c x  2 log c y  5 log c z 

2
3
5
log c x  log c y  log c z
2
2




Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Condense Logs
 Write the expressions in condensed form
a. log 3x  log 4y
1
b. 2 ln x  ln x 2  1
2


c. 2 log 2 5  log 2 9  log 2 75
1
2

d.  ln x  ln x  1  ln x  1 
3

Chabot College Mathematics
19

Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Condense Logs
 Solution a)
 3x 
a. log 3x  log 4y  log  
 4y 
 Solution b)
1
b. 2 log x  ln x 2  1  ln x 2  ln x 2  1
2




 ln x
Chabot College Mathematics
20
2
x 1
2
1
2


Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Condense Logs
 Solution c)
c. 2 log 2 5  log 2 9  log 2 75
 log 2 5  log 2 9  log 2 75
2
 log 2 25  9   log 2 75
25  9
 log 2
75
 log 2 3
Chabot College Mathematics
21
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Condense Logs
 Solution d)
1
d.  ln x  ln x  1  ln x 2  1 
3
1
2

  ln x x  1  ln x  1 
3
1  x x  1
 ln  2
3  x  1 


x
x

1


 ln 3 2
x 1
Chabot College Mathematics
22


Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Log of Base to Exponent
 For any
Base a
k
log a a  k .
 That is, the logarithm, base a, of a
to an exponent is the exponent
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Example  Log Base-to-Exp
 Simplify: a) log668
b) log33−3.4
 Solution a)
log668 =8
8 is the exponent to which you
raise 6 in order to get 68.
 Solution b)
log33−3.4 = −3.4
Chabot College Mathematics
24
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Summary of Log Rules
 For any positive numbers M, N,
and a with a ≠ 1
log a ( MN )  log a M  log a N ;
log a M
p
 p log a M ;
M
log a
 log a M  log a N ;
N
k
log a a  k .
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Typical Log-Confusion
 Beware that Logs do NOT behave
Algebraically. In General:
log a ( MN )  (log a M )(log a N ),
M log a M
log a

,
N log a N
log a ( M  N )  log a M  log a N ,
log a ( M  N )  log a M  log a N .
Chabot College Mathematics
26
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
WhiteBoard Work
 Problems From §9.4 Exercise Set
•
24, 30, 36, 58, 60
 Condense
Logarithm
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
All Done for Today
Mathematical
Association
Log Poster
Chabot College Mathematics
28
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
29
Bruce Mayer, PE
[email protected] • MTH55_Lec-62_sec_9-4a_Log_Rules.ppt
Related documents