Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chabot Mathematics §7.7 Complex Numbers Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot College Mathematics 1 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Review § 7.6 MTH 55 Any QUESTIONS About • §7.6 → Radical Equations Any QUESTIONS About HomeWork • §7.6 → HW-35 Chabot College Mathematics 2 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Imaginary & Complex Numbers Negative numbers do not have square roots in the real-number system. A larger number system that contains the real-number system is designed so that negative numbers do have square roots. That system is called the complex-number system. The complex-number system makes use of i, a number that with the property (i)2 = −1 Chabot College Mathematics 3 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt The “Number” i i is the unique number for which i2 = −1 and so i 1 Thus for any positive number p we can now define the square root of a negative number using the product-rule as follows . p 1 p i p or Chabot College Mathematics 4 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt pi, Imaginary Numbers An imaginary number is a number that can be written in the form bi, where b is a real number that is not equal to zero Some Examples 37i i 5 i 29 73 i is called the “imaginary unit” Chabot College Mathematics 5 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Imaginary Numbers Write each imaginary number as a product of a real number and i a) 16 b) 21 c) 32 SOLUTION a) 16 21 c) 32 116 1 21 1 32 1 16 i4 1 21 1 32 i 16 2 4i 2 Chabot College Mathematics 6 b) i 21 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt ReWriting Imaginary Numbers To write an imaginary number n in terms of the imaginary unit i: 1. Separate the radical into two factors 1 n . 2. Replace 1 with n. i 3. Simplify 1 n . Chabot College Mathematics 7 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Imaginary Numbers a) i: 9 Express in terms of b) 48 b) a)a) 9 SOLUTION b) 48 a) 9 1 9 1 9 i 3, or 3i. b)b) 48 1 16 3 1 16 3 i 4 3 4i 3 Chabot College Mathematics 8 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Complex Numbers The union of the set of all imaginary numbers and the set of all real numbers is the set of all complex numbers A complex number is any number that can be written in the form a + bi, where a and b are real numbers. • Note that a and b both can be 0 Chabot College Mathematics 9 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Complex Number Examples The following are examples of Complex numbers 7 2i 1 2 i 3 11i Chabot College Mathematics 10 Here a = 7, b =2. Here a 2, b 1/ 3. Here a 0, b 11. Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Chabot College Mathematics 11 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Add/Subtract Complex No.s Complex numbers obey the commutative, associative, and distributive laws. Thus we can add and subtract them as we do binomials; i.e., • Add Reals-to-Reals • Add Imaginaries-to-Imaginaries Chabot College Mathematics 12 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Add & Sub Add or subtract and simplify a+bi (−3 + 4i) − (4 − 12i) SOLUTION: We subtract complex numbers just like we subtract polynomials. That is, add/sub LIKE Terms → Add Reals & Imag’s Separately • (−3 + 4i) − (4 − 12i) = (−3 + 4i) + (−4 + 12i) • Chabot College Mathematics 13 = −7 + 16i Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Add & Sub a) simplify (3 2i) to (7 a+bi 8i) Add or subtract and a)a) (3 2i) (7 8i) b)b) (10 2i) (9 i) b) (10 2i) (9 i) Combining real and imaginary parts SOLUTION a)a) (3 2i) (7 8i) (3 7) (2i 8i) 10 (2 8)i 10 10i b)b) (10 2i) (9 i) (10 9) (2i i) 1 3i Chabot College Mathematics 14 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Complex Multiplication To multiply square roots of negative real numbers, we first express them in terms of i. For example, 6 5 1 6 1 5 i 6 i 5 i 2 30 1 30 30. Chabot College Mathematics 15 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Caveat Complex-Multiplication CAUTION With complex numbers, simply multiplying radicands is incorrect when both radicands are negative: 3 5 15. The Correct Multiplicative Operation 3 5 1 3 1 5 1 3 1 5 2 1 1 3 5 1 3 5 1 15 15 Chabot College Mathematics 16 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Multiply a) 2 10 b) 2i 5 3i a) to 2 a+bi 10 form Multiply & Simplify a)a) 2 10 b)b) 2i 5 3i c)c) 2 i 4 3i b) 2i 5 3i c) 2 i 4 3i c) SOLUTION 2 i 4 3i a)a) 2 10 1 2 1 10 i 2 i 10 2 i 20 1 2 5 2 5 Chabot College Mathematics 17 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Multiply a) to 2 a+bi 10 form Multiply & Simplify a) c) b)b) 2i 5 3i c) 2 i 4 3i SOLUTION: Perform Distribution b)b) 2i 5 3i 2i 5 2i 3i 10i 6i 2 10i 6 6 10i Chabot College Mathematics 18 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Multiply a) 2 10 b) 2i 5 3i Multiply & Simplify to a+bi form a) b) c)c) 2 i 4 3i SOLUTION : Use F.O.I.L. c)c) 2 i 4 3i 8 6i 4i 3i 8 2i 3 11 2i Chabot College Mathematics 19 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 2 Complex Number CONJUGATE The CONJUGATE of a complex number a + bi is a – bi, and the conjugate of a – bi is a + bi Some Examples 13i Conjugate 13i 31 i 2 Conjugate 31 i 2 Chabot College Mathematics 20 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Conjugate Find the conjugate of each number a) 4 + 3i b) −6 − 9i c) i SOLUTION: a) The conjugate is 4 − 3i b) The conjugate is −6 + 9i c) The conjugate is −i (think: 0 + i) Chabot College Mathematics 21 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Conjugates and Division Conjugates are used when dividing complex numbers. The procedure is much like that used to rationalize denominators. Note the Standard Form for Complex Numbers does NOT permit i to appear in the DENOMINATOR • To put a complex division into Std Form, Multiply the Numerator and Denominator by the Conjugate of the DENOMINATOR Chabot College Mathematics 22 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Division 3 2i Divide & Simplify to a+bi form a) i 4i SOLUTION: Eliminate i fromb)DeNom by 2 3i multiplying the Numer & DeNom by the Conjugate of i 3 2i 3 2i i 3i 2i 2 1 3i a) 2 i i i 1 i 2 2 3i Chabot College Mathematics 23 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 3 2i a) Example Complex Division i 4i b) Divide & Simplify to a+bi form 2 3i SOLUTION: Eliminate i from DeNom by multiplying the Numer & DeNom by the Conjugate of 2−3i NEXT SLIDE for Reduction Chabot College Mathematics 24 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Division 4i 4 i 2 3i b) SOLN 2 3i 2 3i 2 3i (4 i )(2 3i) 8 12i 2i 3i 2 (2 3i)(2 3i) 4 9i 2 8 14i 3 5 14i 49 13 5 14 i 13 13 Chabot College Mathematics 25 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Complex Division 3 5i Divide & Simplify to a+bi form 5i SOLUTION: Rationalize DeNom by Conjugate of 5−i 15 3i 25i 5 3 5i 3 5i 5 i 5i 5i 5i 15 3i 25i 5i 25 i 2 15 3i 25i 5(1) 25 (1) 2 Chabot College Mathematics 26 25 1 10 28i 26 10 28i 26 26 5 14i 13 13 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Powers of i → in Simplifying powers of i can be done by using the fact that i2 = −1 and expressing the given power of i in terms of i2. The First 12 Powers of i i 1 i 5 1 i 9 1 i 1 i 1 i 10 1 i 3 i 2 • i 1 1 i 7 1 1 i 11 1 1 i 4 i 2 • i 2 1 • 1 1 i8 1 i 12 1 2 6 • Note that (i4)n = +1 for any integer n Chabot College Mathematics 27 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Example Powers of i Simplify using Powers of i a) i 40 a. i 40b. i33 b) b. i33 a. SOLUTION : Use (i4)n = 1 a) a. i 40 = i 4 10 = 110 = 1 Write i40 as (i4)10. b)b. i 33 = i 32 i = i = 1 i =i Chabot College Mathematics 28 4 8 i Write i32 as (i4)8. Replace i4 with 1. Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt WhiteBoard Work Problems From §7.7 Exercise Set • 32, 50, 62, 78, 100, 116 DC Ohm' s Law Ohm’s Law of Electrical Resistance v ir in the Frequency Domain uses AC Ohm' s Law Complex Numbers (See ENGR43) V IZ Chabot College Mathematics 29 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt All Done for Today Electrical Engrs Use j instead of i Chabot College Mathematics 30 1 i Math Def 1 j Engr Def Examples : j17 or 23 j Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Chabot Mathematics Appendix r s r s r s 2 2 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] – Chabot College Mathematics 31 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Rational numbers: Complex numbers that are real numbers: a + bi, b = 0 2 , 7, 18, 8.7... 3 Irrational numbers: 2, , 3 7,... The complex numbers: a = bi Complex numbers (Imaginary) a bi , a 0, b 0 : Complex numbers that are not real numbers: a + bi, b ≠ 0 3i , 32 i , 17i ,... Complex numbers a bi , a 0, b 0: 2 2i ,5 4i , 32 75 i Chabot College Mathematics 32 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt Graph y = |x| 6 Make T-table x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Chabot College Mathematics 33 5 y = |x | 6 5 4 3 2 1 0 1 2 3 4 5 6 y 4 3 2 1 x 0 -6 -5 -4 -3 -2 -1 0 1 2 3 -1 -2 -3 -4 -5 file =XY_Plot_0211.xls -6 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 4 5 6 5 5 y 4 4 3 3 2 2 1 1 0 -10 -8 -6 -4 -2 -2 -1 0 2 4 6 -1 0 -3 x 0 1 2 3 4 5 -2 -1 -3 -2 M55_§JBerland_Graphs_0806.xls -3 Chabot College Mathematics 34 -4 M55_§JBerland_Graphs_0806.xls -5 Bruce Mayer, PE [email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 8 10