Download MTH55_Lec-47_sec_7-7_Complex_Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§7.7 Complex
Numbers
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Review § 7.6
MTH 55
 Any QUESTIONS About
• §7.6 → Radical Equations
 Any QUESTIONS About HomeWork
• §7.6 → HW-35
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Imaginary & Complex Numbers
 Negative numbers do not have square
roots in the real-number system.
 A larger number system that contains the
real-number system is designed so that
negative numbers do have square roots.
That system is called the
complex-number system.
 The complex-number system makes
use of i, a number that with the
property (i)2 = −1
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
The “Number” i
 i is the unique number for which
i2 = −1 and so i  1
 Thus for any positive number p we can
now define the square root of a negative
number using the product-rule as follows
.
 p  1 p  i p or
Chabot College Mathematics
4
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
pi,
Imaginary Numbers
 An imaginary number is a number
that can be written in the form bi,
where b is a real number that is not
equal to zero
 Some
Examples
37i
i
5
i  29
 73
 i is called the “imaginary unit”
Chabot College Mathematics
5
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Imaginary Numbers
 Write each imaginary number as a
product of a real number and i
a) 16
b) 21
c)
32
 SOLUTION
a)
16
21
c)
32
 116
 1 21
 1 32
 1  16
 i4
 1  21
 1  32
 i 16  2
 4i 2
Chabot College Mathematics
6
b)
 i 21
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
ReWriting Imaginary Numbers
 To write an imaginary number n
in terms of the imaginary unit i:
1. Separate the radical into two
factors 1  n .
2. Replace 1 with
n. i
3. Simplify
1  n .
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Imaginary Numbers
a) i: 9
 Express in terms of
b)  48
b)
a)a) 9
 SOLUTION
b)  48
a)
9  1  9
 1 9  i  3, or 3i.
b)b)  48   1  16  3
  1 16 3  i  4  3  4i 3
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Complex Numbers
 The union of the set of all imaginary
numbers and the set of all real numbers
is the set of all complex numbers
 A complex number is any number that
can be written in the form a + bi, where
a and b are real numbers.
• Note that a and b both can be 0
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Complex Number Examples
 The following are examples of Complex
numbers
7  2i
1
2 i
3
11i
Chabot College Mathematics
10
Here a = 7, b =2.
Here a  2, b  1/ 3.
Here a  0, b  11.
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Add/Subtract Complex No.s
 Complex numbers obey the
commutative, associative, and
distributive laws.
 Thus we can add and subtract them as
we do binomials; i.e.,
• Add Reals-to-Reals
• Add Imaginaries-to-Imaginaries
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Add & Sub
 Add or subtract and simplify a+bi
(−3 + 4i) − (4 − 12i)
 SOLUTION: We subtract complex
numbers just like we subtract
polynomials. That is, add/sub LIKE Terms
→ Add Reals & Imag’s Separately
• (−3 + 4i) − (4 − 12i) = (−3 + 4i) + (−4 + 12i)
•
Chabot College Mathematics
13
= −7 + 16i
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Add & Sub
a) simplify
(3  2i)  to
(7 a+bi
8i)
 Add or subtract and
a)a) (3  2i)  (7  8i) b)b) (10  2i)  (9  i)
b) (10  2i)  (9  i) Combining real and
imaginary parts
 SOLUTION
a)a) (3  2i)  (7  8i)  (3  7)  (2i  8i)
 10  (2  8)i  10  10i
b)b) (10  2i)  (9  i)  (10  9)  (2i  i)
 1  3i
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Complex Multiplication
 To multiply square roots of negative
real numbers, we first express them
in terms of i. For example,
6  5  1 6  1 5
 i 6 i 5
i
2
30
 1 30   30.
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Caveat Complex-Multiplication
 CAUTION
 With complex numbers, simply
multiplying radicands is incorrect
when both radicands are negative:
3  5  15.
 The Correct Multiplicative Operation
  3    5    1 3   1 5    1  3  1  5 
2
   1   1 3  5     1  3  5    1 15   15
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Multiply
a) 2  10
b) 2i  5  3i 
a) to
2  a+bi
10 form
 Multiply & Simplify
a)a) 2  10 b)b) 2i  5  3i  c)c)  2  i  4  3i 
b) 2i  5  3i  c)  2  i  4  3i 
 c)
SOLUTION
 2  i  4  3i 
a)a) 2  10  1  2  1  10
 i  2  i  10
2
 i  20  1  2 5  2 5
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Multiply
a) to
2  a+bi
10 form
 Multiply & Simplify
a)
c)
b)b) 2i  5  3i 
c)  2  i  4  3i 
 SOLUTION: Perform Distribution
b)b) 2i  5  3i   2i  5  2i  3i
 10i  6i
2
 10i  6  6  10i
Chabot College Mathematics
18
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Multiply
a) 2  10
b) 2i  5  3i 
 Multiply & Simplify to a+bi form
a)
b)
c)c)  2  i  4  3i 
 SOLUTION : Use F.O.I.L.
c)c)
 2  i  4  3i   8  6i  4i  3i
 8  2i  3
 11  2i
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
2
Complex Number CONJUGATE
 The CONJUGATE of a complex
number a + bi is a – bi, and the
conjugate of a – bi is a + bi
 Some Examples
   13i Conjugate     13i
31  i 2 Conjugate  31  i 2
Chabot College Mathematics
20
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Conjugate
 Find the conjugate of each number
a) 4 + 3i
b) −6 − 9i
c) i
 SOLUTION:
a) The conjugate is 4 − 3i
b) The conjugate is −6 + 9i
c) The conjugate is −i (think: 0 + i)
Chabot College Mathematics
21
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Conjugates and Division
 Conjugates are used when dividing
complex numbers. The procedure is much
like that used to rationalize denominators.
 Note the Standard Form for Complex
Numbers does NOT permit i to appear in
the DENOMINATOR
• To put a complex division into Std Form,
Multiply the Numerator and Denominator by
the Conjugate of the DENOMINATOR
Chabot College Mathematics
22
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Division
3  2i
 Divide & Simplify to a+bi form
a)
i
4i
 SOLUTION: Eliminate i fromb)DeNom by
2  3i
multiplying the Numer & DeNom by the
Conjugate of i
3  2i 3  2i  i  3i  2i
 2 1  3i
a)




2
i
i
i
  1
i
2
 2  3i
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
3  2i
a)
Example  Complex Division
i
4i
b)
 Divide & Simplify to a+bi form
2  3i
 SOLUTION: Eliminate i from DeNom by
multiplying the Numer & DeNom by the
Conjugate of 2−3i
  NEXT SLIDE for Reduction
Chabot College Mathematics
24
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Division
4i
4  i 2  3i
b)

 SOLN

2  3i 2  3i 2  3i
(4  i )(2  3i) 8  12i  2i  3i 2


(2  3i)(2  3i)
4  9i 2
8  14i  3 5  14i


49
13
5 14
  i
13 13
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Complex Division
3  5i
 Divide & Simplify to a+bi form
5i
 SOLUTION: Rationalize DeNom
by Conjugate of 5−i
15  3i  25i  5

3  5i 3  5i 5  i


5i
5i 5i
15  3i  25i  5i

25  i 2
15  3i  25i  5(1)

25  (1)
2
Chabot College Mathematics
26
25  1
10  28i

26
10 28i


26 26
5 14i
 
13 13
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Powers of i → in
 Simplifying powers of i can be done by
using the fact that i2 = −1 and expressing
the given power of i in terms of i2.
 The First 12 Powers of i
i  1
i 5  1
i 9  1
i  1
i  1
i 10  1
i 3  i 2 • i  1 1
i 7  1 1
i 11  1 1
i 4  i 2 • i 2  1 • 1  1
i8  1
i 12  1
2
6
• Note that (i4)n = +1 for any integer n
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Example  Powers of i
 Simplify using Powers of i
a) i 40 a. i 40b. i33 b)
b. i33
a.
 SOLUTION : Use (i4)n = 1
a)
a. i
40
= i

4 10
= 110 = 1
Write i40 as (i4)10.
b)b. i 33 = i 32  i
= i
= 1 i
=i
Chabot College Mathematics
28

4 8
i
Write i32 as (i4)8.
Replace i4 with 1.
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
WhiteBoard Work
 Problems From §7.7 Exercise Set
• 32, 50, 62, 78, 100, 116

DC Ohm' s Law
Ohm’s Law of
Electrical Resistance
v  ir
in the Frequency
Domain uses
AC Ohm' s Law
Complex Numbers
(See ENGR43)
V  IZ
Chabot College Mathematics
29
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
All Done for Today
Electrical
Engrs Use
j instead
of i
Chabot College Mathematics
30
 1  i Math Def 
 1  j Engr Def 
Examples : j17 or  23 j
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
31
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Rational numbers:
Complex numbers that
are real numbers:
a + bi, b = 0
2
, 7,  18, 8.7...
3
Irrational numbers:
2,  ,  3 7,...
The complex
numbers:
a = bi
Complex numbers
(Imaginary)
a  bi , a  0, b  0 :
Complex numbers that
are not real numbers:
a + bi, b ≠ 0
 3i , 32 i , 17i ,...
Complex numbers
a  bi , a  0, b  0:
2  2i ,5  4i , 32  75 i
Chabot College Mathematics
32
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
Graph y = |x|
6
 Make T-table
x
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
Chabot College Mathematics
33
5
y = |x |
6
5
4
3
2
1
0
1
2
3
4
5
6
y
4
3
2
1
x
0
-6
-5
-4
-3
-2
-1
0
1
2
3
-1
-2
-3
-4
-5
file =XY_Plot_0211.xls
-6
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
4
5
6
5
5
y
4
4
3
3
2
2
1
1
0
-10
-8
-6
-4
-2
-2
-1
0
2
4
6
-1
0
-3
x
0
1
2
3
4
5
-2
-1
-3
-2
M55_§JBerland_Graphs_0806.xls
-3
Chabot College Mathematics
34
-4
M55_§JBerland_Graphs_0806.xls
-5
Bruce Mayer, PE
[email protected] • MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt
8
10
Related documents