* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download DAO - sisibphysics
Radio direction finder wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Battle of the Beams wikipedia , lookup
Cellular repeater wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Wave interference wikipedia , lookup
Standing wave ratio wikipedia , lookup
Oscilloscope history wikipedia , lookup
Superheterodyne receiver wikipedia , lookup
405-line television system wikipedia , lookup
Analog television wikipedia , lookup
Broadcast television systems wikipedia , lookup
Telecommunication wikipedia , lookup
Single-sideband modulation wikipedia , lookup
Communications IB physics 14.1  Describe what is meant by the modulation of a wave.  Distinguish between a carrier wave and a signal wave.  Describe the nature of amplitude modulation (AM) and frequency modulation (FM).  Solve problems based on the modulation of the carrier wave in order to determine the frequency and the amplitude of the information signal. What is a modulation of a wave?  Changing the amplitude or the frequency of a wave in respect to time, is called modulation of the wave.  This will change the information of the wave. Modulation of a wave Distinguish between a carrier wave and a signal wave.  Carrier wave: The original wave  Signal wave: The superimposed wave  The radio spectrum covers a range of frequencies varying from about 3 kHz to 300 GHz.  The carrier wave below would be a radio frequency wave and if audio data is being transmitted, the signal wave would be an em wave that is in the audio frequency range Describe the nature of amplitude modulation (AM) and frequency modulation (FM).  AM: In amplitude modulation, the frequency of the carrier wave is constant and the signal wave is used to vary the amplitude of the carrier wave. The amplitude of the analogue wave (voltage) is being varied Frequency Modulation  In frequency modulation the amplitude of the carrier wave is kept constant and the signal wave is used to vary the frequency of the carrier wave. Solve problems based on the modulation of the carrier wave in order to determine the frequency and the amplitude of the information signal.  Example) a carrier wave is modulated by 1 signal wave. The result of the modulation yields a max amplitude occurring at every 2.3ms on the carrier wave. Between each max amplitude there are 2.1 * 105 complete oscillations. Determine the frequency of the signal wave and of the carrier wave. Solution  For the signal wave 1/fs = 2.3×10-3  fs =1/2.3×10-3 = 435 Hz for the carrier wave fc = (2.1× 105)/(2.3×10-3 )= 9.1 × 107 = 91 MHz  Example2) If the carrier wave in the above example is frequency modulated by the same signal wave as above, determine the time interval between an oscillation of the carrier wave of maximum frequency and one of minimum frequency. Communications 14.2 Digital Signals 14.1 Solve problems involving the conversation between binary numbers and decimal numbers Power of 10 Power of 2 3 2 1 0 1000 100 10 1 thousands hundreds Tens Units 10^3 10^2 10^1 10^0 3 2 1 0 8 4 2 1 Eights fours twos ones 2^3 2^2 2^1 2^0 Convert the following binary numbers into base 10 (to decimal numbers) 1001011(2) =(2^6)+(2^3)+2+1 =64+8+2+1=75 Decimal  binary numbers 14 =(8+4+2) =2^3+2^2+2^1 =1110(2) 14.2 Distinguish between analogue and digital signals  有 Continuous variation  analogue  Signals continuously changing from one amplitude to another  Continuous variation X …either high or low   digital 14.3 State the advantages of the digital transmission, as compared to the analogue transmission, of information  Noise= when affected by noise, information is unaltered  Source independence= independent of what type of into is transmitted…speech text video all in same signal  Bandwidth & Compression= compressing does not change the info just enables it to transmit quickly  Transmission rate, multiplexing, coding, data manipulation 14.4 Describe, using block diagrams, the principles of the transmission and reception of digital signals Sample data converted into “bytes” Provides the reference pulses Sample and hold Analogue data transmission clock ADC Analogue to digital converter modulator Parallel to serial converter Carrier wave Converts bytes to pulses 14.5 Explain the significance of the number of bits and the bit-rate on the production of a transmitted signal  Number of bits transmitted per second bit rate=data transfer rate  Bit rate= number of bits per sample * sampling frequency  Greater the bit rate, higher the quality of the reproduced transmitted data  Nyquist theorem=sampling theory  To ensure accurate reproduction of the signal must be equal to, or greater than twice the signal frequency 14.6 Describe what is meant by timedivision multiplexing  Time division multiplexing 14.7 Solve problems involving analogue-to-digital conversion  Pg 400 14.8Describe the consequences of digital commutation and multiplexing on worldwide commutations  The amount of information and the speed with which it now can be transmitted across the world…very very fast 14.9 Discuss thee moral, ethical, economic and environmental issues from access to the internet  Can spread political or religious propaganda  Illegal goods sold  Pornography for minors  ‘internet shopping’ and its effect economically and socially  World’s energy consumption
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            