* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Ohms Law - Physics 420 UBC Physics Demonstrations
Superconductivity wikipedia , lookup
Josephson voltage standard wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Negative resistance wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Schmitt trigger wikipedia , lookup
Power electronics wikipedia , lookup
Operational amplifier wikipedia , lookup
Lumped element model wikipedia , lookup
Thermal runaway wikipedia , lookup
Two-port network wikipedia , lookup
RLC circuit wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Surge protector wikipedia , lookup
Electrical ballast wikipedia , lookup
Power MOSFET wikipedia , lookup
Rectiverter wikipedia , lookup
Current source wikipedia , lookup
Current mirror wikipedia , lookup
Opto-isolator wikipedia , lookup
Network analysis (electrical circuits) wikipedia , lookup
Ohm’s Law Mitsuko J. Osugi Physics 409D Winter 2004 UBC Physics Outreach Ohm’s Law Current through an ideal conductor is proportional to the applied voltage – Conductor is also known as a resistor – An ideal conductor is a material whose resistance does not change with temperature For an ohmic device, Voltage Current Resistance V I R V = Voltage I = Current R = Resistance (Volts = V) (Amperes = A) (Ohms = Ω) Current and Voltage Defined Conventional Current: (the current in electrical circuits) Flow of current from positive terminal to the negative terminal. - has units of Amperes (A) and is measured using ammeters. Voltage: Energy required to move a charge from one point to another. - has units of Volts (V) and is measured using voltmeters. Think of voltage as what pushes the electrons along in the circuit, and current as a group of electrons that are constantly trying to reach a state of equilibrium. Ohmic Resistors • Metals obey Ohm’s Law linearly so long as their temperature is held constant – Their resistance values do not fluctuate with temperature • i.e. the resistance for each resistor is a constant Most ohmic resistors will behave non-linearly outside of a given range of temperature, pressure, etc. Voltage and Current Relationship for Linear Resistors Current (A) Voltage versus Current for a 10 ohm Resistor 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 Voltage (V) Voltage and current are linear when resistance is held constant. Ohm’s Law continued Ohm’s Law continued The total resistance of a circuit is dependant on the number of resistors in the circuit and their configuration Series Circuit Rtotal R R1 R2 ... Parallel Circuit 1 1 1 1 ... Rtotal R R1 R2 Kirchhoff’s Current Law Current into junction = Current leaving junction I in I out The amount of current that enters a junction is equivalent to the amount of current that leaves the junction Iin I1 I1 I2 I2 Iout I in I1 I 2 I out I in I out 0 Kirchhoff’s Voltage Law Sum of all voltage rises and voltage drops in a circuit (a closed loop) equals zero Vin VoltageAcrossEachResistor Vin V1 V2 ... Net Voltage for a circuit = 0 V1 V2 V V1 V2 V V1 V2 0 V Series Circuit Current is constant • Why? – Only one path for the current to take V I R V V1 V2 V3 I I1 I 2 I 3 R R1 R2 R3 Series Equivalent Circuit V1 I R1 V2 I R2 V3 I R3 R R1 R2 R3 V V1 V2 V3 V I R1 I R2 I R3 V I R1 R2 R3 V I R Parallel Circuit V I R V V1 V2 V3 I I1 I 2 I 3 I1 I 23 Voltage is constant where I 23 I 2 I 3 • Why? 1 1 1 1 R R1 R2 R3 – There are 3 closed loops in the circuit Parallel Equivalent Circuits 1 1 1 1 1 1 1 1 1 1 let so R R1 R2 R3 R 23 R2 R3 R R1 R23 1 1 1 1 and R R123 I I1 I 2 I 3 R123 R1 R23 R I1 I 2 I 3 1 V I R I1 I 2 I 3 1 1 1 1 1 1 R1 R2 R3 R1 R2 R3 We’ve now looked at how basic electrical circuits work with resistors that obey Ohm’s Law linearly. We understand quantitatively how these resistors work using the relationship V=IR, but lets see qualitatively using light bulbs. The Light Bulb and its Components • Has two metal contacts at the base which connect to the ends of an electrical circuit • The metal contacts are attached to two stiff wires, which are attached to a thin metal filament. • The filament is in the middle of the bulb, held up by a glass mount. • The wires and the filament are housed in a glass bulb, which is filled with an inert gas, such as argon. Light bulbs and Power Power dissipated by a bulb relates to the brightness of the bulb. The higher the power, the brighter the bulb. Power is measured in Watts [W] 2 V P I2 R V I R For example, think of the bulbs you use at home. The 100W bulbs are brighter than the 50W bulbs. Bulbs in series experiment One bulb connected to the batteries. Add another bulb to the circuit in series. Q: When the second bulb is added, will the bulbs become brighter, dimmer, or not change? • We can use Ohm’s Law to approximate what will happen in the circuit in theory: V IR P V I Bulbs in series experiment continued… V Recall:V I R I R When we add the second lightbulb: V supplied doesn't change, but R increases I for the circuit decreases (but I1 I2 ) P V I decreases The bulbs get dimmer because the power dissipated decreases Bulbs in parallel experiment One bulb connected to the batteries. Add a second bulb to the circuit in parallel. Q: What happens when the second bulb is added? We can use Ohm’s Law to approximate what will happen in the circuit: V IR P V I 1 1 1 R R1 R2 Bulbs in parallel experiment continued… V V IR I R P V I 1 1 1 1 R 1 1 R R1 R2 R1 R2 V constant for the circuit, R decreases I increases P increases as R decreases The bulbs do not change in brightness, but the total power of the circuit is increased Light bulbs are not linear • The resistance of light bulbs increases with temperature R Ro 1 T To R Conductor resistance at temperature T [] Ro Conductor resistance at reference To [] Temperature coefficient of resistance [C 1] T Conductor temperature [C ] To Reference temperature specified for [C ] The filaments of light bulbs are made of Tungsten, which is a very good conductor. It heats up easily. Tungsten 0.004403 / C at 20C (i.e. To 20C ) As light bulbs warm up, their resistance increases. If the current through them remains constant: 2 P I R They glow slightly dimmer when first plugged in. Why? The bulbs are cooler when first plugged in so their resistance is lower. As they heat up their resistance increases but I remains constant P increases Most ohmic resistors will behave non-linearly outside of a given range of temperature, pressure, etc. Voltage versus Current for Constant Resistance The light bulb does not have a linear relationship. The resistance of the bulb increases as the temperature of the bulb increases. “Memory Bulbs” Experiment • Touch each bulb in succession with the wire, each time completing the series circuit Q: What is going to happen? Pay close attention to what happens to each of the bulbs as I close each circuit. “Memory Bulbs” Continued… How did THAT happen?? Temperature of bulbs increases resistance increases power dissipation (brightness) of bulbs increases • Filaments stay hot after having been turned off • In series, current through each resistor is constant – smallest resistor (coolest bulb) has least power dissipation, therefore it is the dimmest bulb RHot RCold P I2 R R PHot PCold 2 2 I I PHot PCold P I2 Conclusion • Ohmic resistors obey Ohm’s Law linearly V IR • Resistance is affected by temperature. The resistance of a conductor increases as its temperature increases. • Light bulbs do not obey Ohm’s Law linearly – As their temperature increases, the power dissipated by the bulb increases • i.e. They are brighter when they are hotter You’re turn to do some experiments! Now you get to try some experiments of your own, but first, a quick tutorial on the equipment you will be using The equipment you’ll be using: - Voltmeter - Breadboard - Resistors - 9V battery Let’s do a quick review… How to use a voltmeter: Voltmeter: - connect either end of the meter to each side of the resistor If you are reading a negative value, you have the probes switched. There should be no continuity beeping. If you hear beeping, STOP what you are doing and ask someone for help! Voltmeter Measuring Voltage Voltage: Probes connect to either side of the resistor Breadboards • You encountered breadboards early in the year. Let’s review them: The breadboard How the holes on the top of the board are connected: Series Resistors are connected such that the current can only take one path Parallel Resistors are connected such that the current can take multiple paths Real data In reality, the data we get is not the same as what we get in theory. Why? Because when we calculate numbers in theory, we are dealing with an ideal system. In reality there are sources of error in every aspect, which make our numbers imperfect. Now go have fun!