Download No Slide Title

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Power MOSFET wikipedia , lookup

Mechanical filter wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Phase-locked loop wikipedia , lookup

Spark-gap transmitter wikipedia , lookup

Yagi–Uda antenna wikipedia , lookup

TRIAC wikipedia , lookup

Superheterodyne receiver wikipedia , lookup

Multimeter wikipedia , lookup

Power electronics wikipedia , lookup

Opto-isolator wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Test probe wikipedia , lookup

Operational amplifier wikipedia , lookup

Surge protector wikipedia , lookup

Crystal radio wikipedia , lookup

Ohm's law wikipedia , lookup

Distributed element filter wikipedia , lookup

Current mirror wikipedia , lookup

Current source wikipedia , lookup

Two-port network wikipedia , lookup

Electrical ballast wikipedia , lookup

Radio transmitter design wikipedia , lookup

Regenerative circuit wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Standing wave ratio wikipedia , lookup

Nominal impedance wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Rectiverter wikipedia , lookup

Index of electronics articles wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Zobel network wikipedia , lookup

RLC circuit wikipedia , lookup

Transcript
Chapter 9
Sinusoids and Phasors
 Phasor Relationships for circuit Elements.
 Impedance and Admittance.
 Kirchoff’s Laws in the Frequency Domain.
 Impedance Combinations.
 Applications.
Huseyin Bilgekul
EENG224 Circuit Theory II
Department of Electrical and Electronic Engineering
Eastern Mediterranean University
EENG224
‹#›
Phasor Relationships for Circuit Elements
 After we know how to convert RLC components
from time to phasor domain, we can transform a time
domain circuit into a phasor/frequency domain
circuit.
 Hence, we can apply the KCL laws and other
theorems to directly set up phasor equations
involving our target variable(s) for solving.
 Next we find the phasor or frequency domain
equivalent of the element equations for RLC
elements.
EENG224
‹#›
Phasor Relationships for Circuit Elements
i(t )  I m cos(t   )  Re(Ie jt )
v(t )  i(t ) R  RI m cos(t   )
V  RI m  =RI
Phasor voltage and current of a
resistor are in phase
Time Domain
Frequency Domain
EENG224
‹#›
Phasor Relationship for Resistor
v(t )  i(t ) R  RI m cos(t   )
Frequency Domain
V  RI m  =RI
Voltage and current of a resistor
are in phase
Time Domain
EENG224
‹#›
Phasor Relationships for Inductor
di
d
v(t )  L  L I m cos(t   )   LI m sin(t   )   LI m cos(t    90)
dt
dt
V   LI m (  90)= LI m e j e j 90  j LI
Phasor current of an inductor
LAGS the voltage by 90 degrees.
Time Domain
Frequency Domain
EENG224
‹#›
Phasor Relationships for Inductor
Frequency Domain
Phasor current of an inductor
LAGS the voltage by 90 degrees.
Time Domain
EENG224
‹#›
Phasor Relationships for Capacitor
dv
d
 C Vm cos(t   )  CVm sin(t   )  CVm cos(t    90)
dt
dt
I
j j 90
I  CVm (  90)=CVm e e  jCV
V=
jC
i (t )  C
Time Domain
Phasor current of a capacitor LEADS
Frequency Domain the voltage by 90 degrees.
EENG224
‹#›
Phasor Relationships for Capacitor
Frequency Domain
Phasor current of a capacitor
LEADS the voltage by 90
degrees.
Time Domain
EENG224
‹#›
Phasor Relationships for Circuit Elements
EENG224
‹#›
Phasor Relationships for Circuit Elements
EENG224
‹#›
Impedance and Admittance

The Impedance Z of a circuit is the ratio of phasor voltage V to the phasor
current I.
V
Z
I
or V =ZI

The Admitance Y of a circuit is the reciprocal of impedance measured in
Simens (S).
I 1
Y 
or I =YV
V Z

Impedances and Admitances of passive elements.
Element Impedance Admitance
R
Z=R
L
Z  j L
C
Z=
1
j C
1
R
1
Y=
j L
Y=
Y  jC
EENG224
‹#›
Impedance as a Function of Frequency

The Impedance Z of a circuit is a function of the frequency.
Element Impedance Admitance
1
L
Z  j L
Y=
j L
1
C
Z=
Y  jC
j C

Inductor is SHORT CIRCUIT at DC and OPEN CIRCUIT at high frequencies.
Capacitor is OPEN CIRCUIT at DC and SHORT CIRCUIT at high frequencies.
Z L  j L
  0 (Short at DC)
Z L      (Open as   )
ZL  0
1
j C
Z C     0 (Open at DC)
 0
ZC =
ZC  0
   (Open as   )
EENG224
‹#›
Impedance of Joint Elements

The Impedance Z represents the opposition of the circuit to the flow of
sinusoidal current.
V
Z   R  jX 
I
=Resistance + j  Reactance
= Z 
Z  R X
2
R  Z cos 

2
Z
+
V
I
-
X
  tan
R
X  Z sin 
1
The Reactance is Inductive if X is positive and it is Capacitive if X is negative.
EENG224
‹#›
Impedance as a Function of Frequency

As the applied frequency increases, the resistance of a resistor remains
constant, the reactance of an inductor increases linearly, and the reactance of a
capacitor decreases nonlinearly.
Reactance of inductor versus
frequency
Reactance of capacitor versus
frequency
EENG224
‹#›
Z
EENG224
‹#›
Admittance of Joint Elements

The Admittance Y represents the admittance of the circuit to the flow of
sinusoidal current.
The admittance is measured in Siemens (s)
Y
+
V
I
-
1 I
Y    G  jB
Z V
 Conductance + j  Suseptance= Y 
1 R  jX
R  jX
Y  G  jB 
 2
R  jX R  jX R  X 2
R
X
G 2
B 2
2
R X
R  X2
EENG224
‹#›
Application of KVL for Phasors

The Kirchoff”s Voltage Law (KVL) holds in the frequency domain. For series
connected impedances:
Z eq 

V
 Z1  Z 2 
I
 Z N (Equivalent Impedance)
The Voltage Division for two elements in series is:
Z1
V1 
V
Z1  Z 2
Z2
V2 
V
Z1  Z 2
EENG224
‹#›
Parallel Combination for Phasors

The Kirchoff”s Voltage Law (KVL) holds in the frequency domain. For series
connected impedances:
1
I
Yeq 
  Y1  Y2 
Zeq V

1 1
 YN   
Z1 Z 2
1

(Eqiv. Admitance)
ZN
The Current Division for two elements is:
I1 
Z2
I
Z1  Z 2
I2 
Z1
I
Z1  Z 2
EENG224
‹#›
Z3
Z1
EENG224
‹#›
EENG224
‹#›
Application of Current Division for Phasors
EENG224
‹#›
Application of Current Division for Phasors
EENG224
‹#›
Example
EENG224
‹#›
EENG224
‹#›
EENG224
‹#›
Z1
EENG224
‹#›