Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
KULIAH MINGGU ke 2 Elektronika Dasar OPERASIONAL AMPLIFIER OP-AMP Jurusan Teknik Elektro 2007 1 Op-amp : suatu IC analog + VCC Input 1 + output Input 2 _ - VEE SIMBOL 2 SIFAT IDEAL Ideally, 1. No current can enter terminals V+ or V-. Called infinite input impedance. A 2. Vout=A(V+ - V-) with A → ∞ 3. In a circuit VOUT = (AV+ - AV ) = A (V+ - V ) V+ is forced equal to V4. An opamp needs two voltages to power it Vcc and -Vee. 3 - Operational Amplifier (Op Amp) Vi1 A Vi2 B - Vout + An operational amplifier (Op Amp) is an integrated circuit of a complete amplifier circuit. Op amps have an extremely high gain (A=105 typically). Vout Vi 2 Vi1 A Op amps also have a high input impedance (R=4 MΩ , typically) and a low output impedance (in order of 100 Ω , typically) . 4 Characters of Operational Amplifiers Not used 8 7 6 5 Offset null high open loop gain high input impedance low output impedance low input offset voltage Offset null 1 2 3 4 low temperature coefficient of input offset voltage low input bias current wide bandwidth large common mode rejection ratio (CMRR) 5 Voltage Output from an Amplifier Vout A Non-linear region Linear region Vin= V2-V1 Daerah Linier ini sangat Kecil Vin The linear range of an amplifier is finite, and limited by the supply voltage and the characteristics of the amplifier. If an amplifier is driven beyond the linear range (overdriven), serious errors can result if the gain is treated as a constant. Kalau A = 106 dan VCC = 12 Volt maka daerah linier = 24 μV 6 OPAMP: COMPARATOR (bekerja di daerah jenuh) Vout=A(Vin – Vref) A If Vin>Vref, Vout = +∞ but practically hits +ve power supply = Vcc A (gain) very high If Vin<Vref, Vout = -∞ but practically hits –ve power supply = -Vee Application: detection of a complex signal in ECG VREF VIN Vcc Vout -Vee 7 OPAMP: ANALYSIS The key to op amp analysis is simple 1. No current can enter op amp input terminals. => Because of infinite input impedance 2. The +ve and –ve (non-inverting and inverting) inputs are forced to be at the same potential. => Because of infinite open loop gain 3. Use the ideal op amp property in all your analysis 8 Inverting Amplifier (bekerja di daerah linier) Point B is grounded, point A is called Virtual Grounded. RF R1 Vin A B Vout + R3 G Voltage across R1 is Vin, and across RF is Vout. - R1 RF R1 RF Vout R F Vin R1 The output node voltage determined by Kirchhoff's Current Law (KCL). Circuit voltage gain determined by the ratio of R1 and RF. 9 PENGUAT INVERTING (bekerja di daerah linier) Kondisi fisik R1 R3 1 8 2 7 3 6 R2 output 4 5 input 10 OPAMP: INVERTING AMPLIFIER 1. V- = V+ 2. As V+ = 0, V- = 0 (VG) 3. As no current can enter V- and from Kirchoff’s Ist law, I1=I2. 4. I1 = (VIN - V-)/R1 = VIN/R1 5. I2 = (0 - VOUT)/R2 = -VOUT/R2 => VOUT = -I2R2 6. From 3 and 6, VOUT = -I2R2 = -I1R2 = -VINR2/R1 (NEG) 7. Therefore VOUT = (-R2/R1)VIN 11 Analysis of Inverting Amplifier RF KCL at A: iF R1 VIN Vin - i-A i1 - i+ B + Vout R i1 i iF iF VIN V i1 R1 and V Vout iF RF i 0 V 0 V 0 Ideal transfer characteristics: i i 0 V V Vout VIN or R1 RF Vout RF Vin R1 12 OPAMP: NON – INVERTING AMPLIFIER (bekerja di daerah linier) 1. V- = V+ 2. As V+ = VIN, V- = VIN Vx 3. As no current can enter V- and from Kirchoff’s Ist law, I1=I2. 4. I1 = Vx/R1=VIN/R1 5. I2 = (VOUT - VIN)/R2 VOUT = VIN + I2R2 6. VOUT = I1R1 + I2R2 = (R1+R2)I1 = (R1+R2)VIN/R1 7. Therefore VOUT = (1 + R2/R1)VIN (tak berlawanan) 13 Noninverting Amplifier Point VA equals to Vin . RF Op-amp circuit is a voltage divider. R1 A Vin B + Vout R1 VA Vout R1 RF Circuit voltage gain determined by the ratio of R1 and RF. Vout RF G 1 Vin R1 14 OPAMP : VOLTAGE FOLLOWER (BUFER) (bekerja di daerah linier) V+ = VIN. i=0 V- = V+ Thus Vout = V- = V+ = VIN !!!! So what’s the point ? The point is, due to the infinite input impedance of an op amp, no current at all can be drawn from the circuit before VIN. Thus this part is effectively isolated. Very useful for interfacing to high impedance sensors such as microelectrode, microphone… 15 Differential Amplifier RF R1 V1 V2 A - R2 B Point B is grounded, so does point A (very small). + Vout Voltage across R1 is V1, and across R2 is V2. Normally: R1 = R2, and RF = R3. R3 Commonly used as a single op-amp instrumentation amplifier. Vout RF (V2 V1 ) R1 16 Analysis of an Instrumentation Amplifier Design a single op-amp instrumentation amplifier. R1 = R2, RF = R3 Determine the instrumentation gain. RF R1 - V1 A R2 V2 B + R3 Vout V VOUT V1 V A A iA R1 RF V2 VB V iB B R2 R3 i A iB 0 VA VB Vout RF (V2 V1 ) R1 V VOUT VB V2 VB V1 V A A R1 RF R3 R2 VOUT V A VB V2 V1 V A VB RF R1 17 SUMMING AMPLIFIER Recall inverting amplifier and If = I1 + I2 + … + In If V = -R (V1/R1 + V2/R2 + … + Vn/Rn) R RF R Vout F V1 OUT V2 F V3 f R2 R3 R1 Summing amplifier is a good example of analog circuits serving as analog computing amplifiers (analog computers)! Note: analog circuits can add, subtract, multiply/divide (using logarithmic components, differentiat and integrate – in real time and continuously. 18 For the following circuit, calculate the input resistance. Vin R1 Rf Vout R2 19 INSTRUMENTATION AMPLIFIER 20 INSTRUMENTATION AMPLIFIER Gain in the multiple stages: i.e. High Gain – so, you can amplify small signals Inverting amplifier very high input impedance - So, you can connect to sensors Differential amplifier -> it rejects common-mode interference -> so you can reject noise Non-inverting amplifier 21 INSTRUMENTATION AMPLIFIER: STAGE 1 Recall virtual ground of opamps I1 = (V1 – V2)/R1 I1I1 I2 I3 Recall no current can enter opamps and Kirchoff’s current law I2 = I3 = I1 Recall Kirchoff’s voltage law VOUT = (R1 + 2R2)(V1 – V2)/R1 = (V1 – V2)(1+2R2/R1) 22 INSTRUMENTATION AMPLIFIER: STAGE 2 Recall virtual ground of opamps and voltage divider V- = V+ = VBR4/(R3 + R4) VA VB I1 I2 I3 Recall no current can enter opamps (VA – V-)/R3 = (V- – VOUT)/R4 Solving, VOUT = – (VA – VB)R4/R3 23 INSTRUMENTATION AMPLIFIER: COMPLETE VOUT = – (V1 – V2)(1 + 2R2/R1)(R4/R3) 24 Analog Signal Conditioner (Current to Voltage Converter, LM-324) +5 VDC Sensor – Variable Resistor 4.7k I1 10k I2 10k I3 5k Vout 0-5 VDC As force is applied on the sensor, the value of the variable resistor changes which results in a specific voltage output. Gain = Vout/Vin = 1 Resistor Values for the Inverting OP-Amp can be changed to modify gain of converter or to amplify the signal of interest. 25 Single-Ended Input + ~ Vi V o + V o ~ Ref:080114HKN • + terminal : Source • – terminal : Ground • 0o phase change • + terminal : Ground • – terminal : Source • 180o phase change V i Operational Amplifier 26 Double-Ended Input • Differential input V + d ~ V • o • 0o phase shift change + ~ V1 between Vo and Vd V o Qu: What Vo should be if, V 2 ~ Vd V V V 2 V 1 Ans: (A or B) ? (A) Ref:080114HKN Operational Amplifier (B) 27 Distortion +V =+5V cc + V V +5V o d 0 5V V =5V cc The output voltage never excess the DC voltage supply of the Op-Amp Ref:080114HKN Operational Amplifier 28 Common-Mode Operation + • Same voltage source is applied at both terminals o • Ideally, two input are equally amplified • Output voltage is ideally zero due to differential voltage is zero • Practically, a small output signal can still be measured V V i ~ Note for differential circuits: Opposite inputs : highly amplified Common inputs : slightly amplified Common-Mode Rejection Ref:080114HKN Operational Amplifier 29 Common-Mode Rejection Ratio (CMRR) Differential voltage input : Vd V V Noninverting + Input Output Common voltage input : 1 Vc (V V ) 2 Output voltage : Vo Gd Vd GcVc Gd : Differential gain Gc : Common mode gain Ref:080114HKN Inverting Input Common-mode rejection ratio: CMRR Gd G 20 log 10 d (dB) Gc Gc Note: When Gd >> Gc or CMRR Vo = GdVd Operational Amplifier 30 CMRR Example What is the CMRR? 100V 100V + 60700V 80600V 20V + 40V Solution : Vd 1 100 20 80V (1) Vd 2 100 40 60V 100 20 100 40 60V Vc 2 70V 2 2 From (1) Vo 80Gd 60Gc 80600V Vc1 From (2) Gd 1000 (2) Vo 60Gd 70Gc 60700V and Gc 10 CMRR 20 log( 1000 / 10) 40dB NB: This method is Not work! Why? Ref:080114HKN Operational Amplifier 31 Op-Amp Properties V1 (1) Infinite Open Loop gain - The gain without feedback Equal to differential gain Zero common-mode gain Pratically, Gd = 20,000 to 200,000 (2) Infinite Input impedance - Input current ii ~0A T- in high-grade op-amp m-A input current in low-grade op-amp (3) Zero Output Impedance - act as perfect internal voltage source No internal resistance Output impedance in series with load Reducing output voltage to the load Practically, Rout ~ 20-100 Ref:080114HKN Operational Amplifier + V2 Vo i1~0 + i2~0 Vo Rout Vo' + Vload Rload Rload Vo Rload Rout 32 Frequency-Gain Relation • • • • • Ideally, signals are amplified from DC to the highest AC frequency (Voltage Gain) Practically, bandwidth is limited Gd 741 family op-amp have an limit 0.707Gd bandwidth of few KHz. Unity Gain frequency f1: the gain at unity Cutoff frequency fc: the gain drop by 3dB from dc gain Gd 20log(0.707)=3dB 1 0 fc f1 (frequency) GB Product : f1 = Gd fc Ref:080114HKN Operational Amplifier 33 GB Product Example: Determine the cutoff frequency of an op-amp having a unit gain frequency f1 = 10 MHz and voltage differential gain Gd = 20V/mV (Voltage Gain) Sol: Gd 0.707Gd Since f1 = 10 MHz ? Hz By using GB production equation f1 = Gd fc fc = f1 / Gd = 10 MHz / 20 V/mV = 10 106 / 20 103 10MHz 1 = 500 Hz 0 fc f1 (frequency) Ref:080114HKN Operational Amplifier 34 Ideal Vs Practical Op-Amp Ideal Practical Open Loop gain A 105 Bandwidth BW 10-100Hz Input Impedance Zin >1M 0 10-100 Depends only on Vd = (V+V) Differential mode signal Depends slightly on average input Vc = (V++V)/2 Common-Mode signal 10-100dB Output Impedance Zout Output Voltage Vout CMRR Ref:080114HKN Operational Amplifier Ideal op-amp + AVin Vin Vout ~ Zout=0 Practical op-amp + Vin Zout Zin ~ Vout AVin 35 Ideal Op-Amp Applications Analysis Method : Two ideal Op-Amp Properties: (1) The voltage between V+ and V is zero V+ = V (2) The current into both V+ and V termainals is zero For ideal Op-Amp circuit: (1) Write the kirchhoff node equation at the noninverting terminal V+ (2) Write the kirchhoff node eqaution at the inverting terminal V (3) Set V+ = V and solve for the desired closed-loop gain Ref:080114HKN Operational Amplifier 36 Noninverting Amplifier (1) Kirchhoff node equation at V+ yields, V V V + in V o i (2) Kirchhoff node equation at V yields, V 0 V Vo Ra (3) Rf 0 Ra Rf Setting V+ = V– yields Vi Vi Vo 0 or Ra Rf Ref:080114HKN Rf Vo 1 Vi Ra Operational Amplifier 37 v+ vi v- + vo R 1 Rf v+ v- Rf Ra 2 v- Voltage follower o R f Noninverting input with voltage divider Rf R2 vo (1 )( )vi Ra R1 R2 )vi + v a Rf v+ v i R vo 1 R 2 v- + v o R Less than unity gain f vo vi Ref:080114HKN R R Noninverting amplifier vo (1 + i Ra vi v+ v R2 vo vi R1 R2 Operational Amplifier 38 Inverting Amplifier (1) Rf Kirchhoff node equation at V+ yields, V 0 Ra (2) Kirchhoff node equation at V yields, Vin V_ V V o 0 Ra Rf (3) Setting V+ = V– yields Vo R f Vin Ra Ref:080114HKN V ~ in V o + Notice: The closed-loop gain Vo/Vin is dependent upon the ratio of two resistors, and is independent of the open-loop gain. This is caused by the use of feedback output voltage to subtract from the input voltage. Operational Amplifier 39 Multiple Inputs (1) Kirchhoff node equation at V+ yields, V 0 (2) Kirchhoff node equation at V yields, V_ Vo Rf (3) Rf Va Vb Vc Ra Rb Rc V o + V Va V Vb V Vc 0 Ra Rb Rc Setting V+ = V– yields c V Va Vb Vc j Vo R f R f j a R j Ra Rb Rc Ref:080114HKN Operational Amplifier 40 Inverting Integrator Zf Now replace resistors Ra and Rf by complex ZZ f , respectively, therefore componentsV Za and f in V o Za in Supposing (i) The feedback1 component is a capacitor C, i.e., Zf jC (ii) The input component is a resistor R, Za = R Therefore, the closed-loop gain (Vo/Vin) become: Za where What happens if Za = 1/jC whereas, Zf Inverting differentiator Ref:080114HKN + C R vi (t ) Vi e jt ~ V = R? Operational Amplifier in V o V ~ 1 vo (t ) vi (t )dt RC V o + 41 Example: (a) Op-Amp Integrator C Determine the rate of change of the output voltage. R +5V 0 100s (b) Draw the output waveform. V i 10 k 0.01F V o + Vo(max)=10 V Solution: (a) Rate of change of the output voltage Vo V 5V i t RC (10 k)(0.01 F) 50 mV/ s +5V 0 V i 0 (b) In 100 s, the voltage decrease Vo (50 mV/ s)(100μs) 5V Ref:080114HKN -5V -10V Operational Amplifier V o 42 Op-Amp Differentiator R C 0 to t1 t2 V i V o 0 + to t1 t2 dV vo i RC dt Ref:080114HKN Operational Amplifier 43 Non-ideal case (Inverting Amplifier) Rf Ra V in + V o Vin ~ Vin Zout Zin ~ Vout AVin + Equivalent Circuit 3 categories are considering Rf Ra R R V + + Ref:080114HKN Practical op-amp V o Close-Loop Voltage Gain Input impedance Output impedance -AV Operational Amplifier 44 Close-Loop Gain Applied KCL at V– terminal, Rf Vin V V Vo V 0 Ra R Rf V Ra in By using the open loop gain, V R R + + Vo AV Vin Vo V V V o o o 0 Vin Ra ARa AR R f AR f R R f Ra R f Ra R ARa R Vin Vo Ra ARa R R f Ra V o -AV Rf V o V R The Close-Loop Gain, Av AR R f Vo Av Vin R R f Ra R f Ra R ARa R Ref:080114HKN Operational Amplifier 45 Close-Loop Gain When the open loop gain is very large, the above equation become, Av ~ Rf Ra Note : The close-loop gain now reduce to the same form as an ideal case Ref:080114HKN Operational Amplifier 46 Input Impedance Rf Input Impedance can be regarded as, V Rin Ra R // R in R where R is the equivalent impedance of the red box circuit, that is R Ra V R + + V if V o -AV R' However, with the below circuit, V ( AV ) i f ( R f Ro ) V R f Ro R if 1 A Ref:080114HKN if Rf R V + Operational Amplifier -AV 47 Input Impedance Finally, we find the input impedance as, 1 1 A Rin Ra R R R f o Since, 1 Rin Ra R ( R f Ro ) R f Ro (1 A) R R f Ro (1 A) R , Rin become, Rin ~ Ra Again with ( R f Ro ) (1 A) R f Ro (1 A) Rin ~ Ra Note: The op-amp can provide an impedance isolated from input to output Ref:080114HKN Operational Amplifier 48 Output Impedance Only source-free output impedance would be considered, i.e. Vi is assumed to be 0 Firstly, with figure (a), Ra Ra // R Ra R Vo V Vo R f Ra // R Ra R f Ra R R f R By using KCL, io = i1+ i2 V io Rf R V Vo V ( AV ) o R f Ra // R f Ro io R V + -AV By substitute the equation from Fig. (a), The output impedance, Rout is Ro ( Ra R f Ra R R f R ) Vo io (1 Ro )( Ra R f Ra R R f R ) (1 A) Ra R R and A comparably large, Ro ( Ra R f ) Rout ~ ARa Ref:080114HKN Rf V R V Ra R (a) Operational Amplifier i2 i1 V + -AV (b) 49 o KOMPARATOR Rangkaian komparator digunakan untuk membandingkan tegangan masukan dan tegangan referensi. Tegangan keluaran hanya ada dua kondisi yaitu tegangan tinggi atau rendah (negatif). Kondisi ini ditentukan oleh besarnya tegangan masukan apakah lebih tinggi terhadap tegangan referensi atau lebih rendah. Persoalan dalam komparator sederhana adalah stabilitas. Bila tegangan masukan bervariasi sekitar tegangan referensi maka tegangan keluaran akan berubah-ubah tidak stabil. Hal tersebut dapat dihilangkan dengan rangkaian schmitt. 50 KOMPARATOR SEDERHANA 51 KURVA HUBUNGAN TEGANGAN Vr>0 Vi < Vr Vi > Vr Vo = +Vsat Vo = -Vsat 52 KURVA HUBUNGAN TEGANGAN Vo Vr=0 Vi Vi < Vr Vi > Vr Vo = +Vsat Vo = -Vsat 53 KURVA HUBUNGAN TEGANGAN Vo Vr<0 Vi Vi < Vr Vi > Vr Vo = +Vsat Vo = -Vsat 54 STABILITAS KOMPARATOR SEDERHANA Vcc Vin VCC/2 Teganga n masukan R Vcc/2 R Tegangan keluaran 55 RANGKAIAN SCHMITT Positive Feedback Vin Vout Vout /2 R R Rangkaian ini disebut komparator Schmitt trigger. Rangkaian resistor membuat positive feedback. 56 CARA KERJA Schmitt trigger Vin Vout Vout /2 R R Anggap tegangan masukan kecil, tegangan keluaran menjadi tinggi. Bila Vout is 4 V, maka masukan non-inverting V+ adalah 2 Volt. Kondisi keluaran tetap selama Vin kurang dari 2 Volt. Bila Vin diperbesar sehingga lebih besar dari 2 V, maka Vout akan nol, dan V+ akan nol juga. Kondisi output ini akan tetap, selama Vin lebih besar 2 V. 57 TAK STABIL 58 STABIL histerisis 59 STABIL 60 STABIL 61 RANGKAIAN dan OUTPUT 62 KETERANGAN SCHMITT Schmitt trigger adalah sebuah aplikasi comparator yang mengubah tagangan keluaran menjadi negatif bila mtegangan masukan lebih besar tegangan referensi. Kemudian menggunakan negative feedback untuk mencegah agar tegangan keluaran tdk kembali ke kondisi semula saat tegangan kembali kurang dari tegangan referensi, sampai nanti masukan lebih kecil dari yang ditentukan. 63 A P L I K A S I 64 PERHITUNGAN Kerja Schmitt trigger merupakan proses komparasi dengan threshold ganda. Persamaan arus di titik A: Karena hanya 2 pers, maka harus ada satu R yang ditentukan dulu. Ingat : Vout = VCC saat Vin diatas batas atas (V2) Vout = -VEE saat Vin dibawah batas bawah (V2’). 65 u 66 LM741 67 NOMOR KAKI 68 69 70 71 72 73 74 KESIMPULAN Op-amp dapat digunakan sebagai : 1. 2. 3. 4. 5. 6. Penguat INVERTING Penguat NON INVERTING BUFER Penguat PENJUMLAH Penguat INSTRUMENTASI Pengubah ARUS KE TEGANGAN atau sebaliknya 7. KOMPARATOR 75 PR • Buktikan rumus untuk menghitung R1, R2 dan R3 pada komparator Schmitt (slide 41), bila batas atas dan batas bawah diketahui. • Rencanakanlah sebuah komparator Schmitt dengan menggunakan sebuah op-amp, yang menggunakan single supply 5 Volt. Batas tegangan yang dideteksi adalah diatas 3 Volt memberikan tegangan output tinggi, dan dibawah 1 Volt menghasilkan tegangan output rendah. Tentukan nilai R yang diperlukan. 76