Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture 16 AC Circuit Analysis (1) Hung-yi Lee Textbook • Chapter 6.1 AC Steady State y t y N t y F t Second order circuits: If the circuit is stable: As t → ∞ y N t A1e 1t A 2 e 2t y N t A1t A 2 e t y N t e t a cos d t b sin d t y N t 0 y t y F t Steady State In this lecture, we only care about the AC steady state Source: xt A cost AC Steady State • Why we care about AC steady state? • Fourier Series/Fourier Transform AC Steady State • Why we care about AC steady state? • Fourier Series/Fourier Transform • Most waveforms are the sum of sinusoidal waves with different frequencies, amplitudes and phases • Compute the steady state of each sinusoidal wave • Obtaining the final steady state by superposition Example 6.3 vt iR t 6 cos 4000t 20 R vt 30 cos 4000t 20 iC t Cvt 25 30 4000 sin 4000t 20 t i t 6 cos4000t 20 3 sin 4000t 20 3 sin 4000t 20 3 cos 4000t 110 i t iR C 6 3 6 3 cos 4000t 20 sin 4000t 20 2 2 2 2 6 3 6 3 6 .7 sin 26 . 6 cos 26.6 2 2 6.7 cos 4000t 46.6 Example 6.4 1 i t iR t iC t vt Cvt R vt A cos 4000t B sin 4000t i t 3 cos4000t 1 A cos 4000t B sin 4000t 5 25 4000- A sin 4000t B cos 4000t 3 cos 4000t 0.2 A 0.1B 3 0.1A 0.2 B 0 A 12 B6 vt 12 cos 4000t 6 sin 4000t 13.4cos 4000t - 26.6 Example 6.4 i t 3 cos4000t 1 i t iR t iC t vt Cvt R vt 13.4cos 4000t - 26.6 iR t 2.68cos 4000t - 26.6 1.34sin 4000t - 26.6 1.34cos4000t 63.4 iC t Cvt 25 13.4 4000sin 4000t - 26.6 AC Steady-State Analysis Example 6.3 vt 30 cos 4000t 20 Example 6.4 i t 3 cos4000t i t 3 cos4000t 110 i t 6.7 cos4000t 46.6 iR t 6 cos 4000t 20 C t 2.68cos4000t - 26.6 t 1.34cos4000t 63.4 vt 13.4cos 4000t - 26.6 iR iC AC Steady-State Analysis • AC steady state voltage or current is the special solution of a differential equation. • AC steady state voltage or current in a circuit is a sinusoid having the same frequency as the source. • This is a consequence of the nature of particular solutions for sinusoidal forcing functions. • To know a steady state voltage or current, all we need to know is its magnitude and its phase • Same form, same frequency AC Steady-State Analysis • For current or voltage at AC steady state, we only have to record amplitude and phase xt X m cost Amplitude: Xm Phase: ϕ Phasor • A sinusoidal function is a point on a x-y plane xt X m cost Polar form: X X m Rectangular form: X X m cos jX m sin Exponential form: X X e j m Review – Operation of Complex Number A is a complex number Review – Operation of Complex Number A is a complex number rectangular polar: A ar jai | A | A ar | A | cos A , ai | A | sin A | A | ar ai 2 ai A tan ar 2 1 Review – Operation of Complex Number A is a complex number Complex conjugate: A ar jai | A | a A ar jai | A | a A A 2 ReA 2ar A A ar ai | A |2 2 2 Review – Operation of Complex Number A ar jai B br jbi A B (ar br ) j (ai bi ) ReA B ReA ReB ImA B ImA ImB Addition and subtraction are difficult using the polar form. Review – Operation of Complex Number A | A | A B | B | B A B | A || B | ( A B ) A A ( A B ) B B A ar jai B br jbi A B (ar jai ) (br jbi ) (ar br ai bi ) j (ar bi ai br ) ar bi ai br B (br jbi )(ar jai ) br ar bi ai j 2 2 2 2 A (ar jai )(ar jai ) ar ai ar ai Phasor Sinusoid function: xt X m cost Phasor: X X m It is rotating. At t=0, the phasor is at X m Its projection on x-axis producing the sinusoid function 2 f Phasor - Summation • KVL & KCL need summation Textbook, P245 - 246 x1 t X 1 cos(t 1 ) X 1 X 11 x2 t X 2 cos(t 2 ) X 2 X 2 2 y t X 1 cos(t 1 ) X 2 cos(t 2 ) Y Y Y X 1 X 2 X 11 X 2 2 X 1 X 2 1 2 Y X1 X 2 , X1 X 2 KCL and KVL for Phasors KCL input current output current ix1 t ix 2 t i y1 t i y 2 t I x1 I x 2 I y1 I y 2 KVL voltage rise voltage drop ix1 t ix 2 t i y1 t i y 2 t I x1 I x 2 I y1 I y 2 Phasors also satisfy KCL and KVL. Phasor - Multiplication Phasor Time domain x(t ) Kx(t ) Multiply k v(t ) Ri (t ) X kX Multiply k V RI Phasor - Differential • We have to differentiate a sinusoidal wave due to the i-v characteristics of capacitors and inductors. x(t ) Differentiate dx(t ) dt j X X Multiplying jω Phasor - Differential • We have to differentiate a sinusoidal wave due to the i-v characteristics of capacitors and inductors. Time domain Phasor x(t ) X cos(t 1 ) X1 dx(t ) X sin(t 1 ) dt X cos(t 1 90 ) X 1 90 Phasor - Differential • We have to differentiate a sinusoidal wave due to the i-v characteristics of capacitors and inductors. Phasor X1 Equivalent to multiply jω Rotate 90。 Multiply ω X 1 90 Differentiate on time domain = phasor multiplying jω Phasor - Differential i leads v by 90。 • Capacitor Time domain Phasor dvt i (t ) C dt I j C V Phasor - Differential v leads i by 90。 • Inductor Time domain Phasor di t v(t ) L dt V j L I Capacitor & Inductor For C, i leads v but v leads i for L Phasor Time domain i-v characteristics Phasors satisfy Ohm's law for resistor, capacitor and inductor. i-v characteristics Impedance Resistor Capacitor ZR R Z L j L Inductor 1 1 ZC j j C C Admittance is the reciprocal of impedance. When 0(DC), Z L jL 0, short circuit When (hight - frequency), Z L jL , open circuit 1 ZC , open circuit j C 1 ZC 0, short circuit j C Equivalent impedance and admittance Series equivalent impedance Z ser Z1 Z 2 Z N Parallel equivalent impedance 1 1 1 1 Z par Z1 Z 2 ZN Impedance After series and parallel, the equivalent impedance is Z R jX where ReZ R, ac resistances ImZ X , reactances Resistor Capacitor ZR R Z L j L Inductor 1 1 ZC j j C C Inductors and capacitors are called reactive elements. Inductive reactance is positive, and capacitive reactance is negative. Impedance Triangle After series and parallel, the equivalent impedance is Z R jX where ReZ R, ac resistances ImZ X , reactances Z Z Z R2 X 2 Z tan 1 X R 33 AC Circuit Analysis • 1. Representing sinusoidal function as phasors • 2. Evaluating element impedances at the source frequency • Impedance is frequency dependent • 3. All resistive-circuit analysis techniques can be used for phasors and impedances • Such as node analysis, mesh analysis, proportionality principle, superposition principle, Thevenin theorem, Norton theorem • 4. Converting the phasors back to sinusoidal function. Example 6.6 v 30 cos(4000t 20 ) R 5 C 25 μF Z R 5 1 1 ZC j j C C 1 j j10 4000 25μ Z Z R || Z C (5) || ( j10) 5 j10 5 j10 4 j 2 4.47 26.6 3020 V I Z 4.47 26.6 30 20 (26.6 ) 6.7146.6 A 4.47 Example 6.7 • Impedance is frequency dependent Z R ZC Find equivalent Z eq Z R || Z C network Z R ZC R R/jC Zeq should be Zeq(ω) or Zeq(jω) R 1 / j C 1 j R C R R 1 j R C Zeq j 1 j R C 1 j R C 1 j R C 2 2 R R C R j R C j 2 2 2 1 RC 1 RC 1 RC Example 6.7 • Impedance is frequency dependent R R 2 C Zeq j j 2 2 1 RC 1 RC If ω → 0 Find equivalent network Zeq j R For DC, C is equivalent to open circuit Zeq j 0 C becomes short If ω → ∞ Example 6.8 i t 10 cos(50000t )mA Find v(t), vL(t) and vC(t) Z L jL j 50k 200m j10k 1 1 1 ZC j j j10k j C C 50k 2n Example 6.8 Z eq Z eq 40 || j10 5 || j10 kΩ Zeq = 4.8kΩ + j6.4k Ω 4.8 j 6.4 kΩ 853.1 kΩ Example 6.8 V 8053.1 V Zeq = 4.8kΩ + j6.4k Ω Zeq 8053.1 V V I Z eq 10m0 8k53.1 8053.1 V Example 6.8 VL V 8053.1 V j10 V 3.2 j88 89.479.7 V (4 j 2) j10 4 j2 VC V 32 j 24 40 36.9 V (4 j 2) j10 Example 6.8 V 8053.1 V v (t ) 80 cos(50000t 53.1 )V VL 89.479.7 V vL (t ) 89.4 cos(50000t 79.7 )V VC 40 36.9 V vC (t ) 40 cos(50000t 36.9 )V i 0 i 0 0 A Complete Response t0 i 0 i 0 0 A i t i 0 i 0 0 A Complete Response i t 1.03 cos5t 59 i t F t 0 I Z L jL j10 t 0 Reach steady state 120 I 1.03 59 6 10 j t 0 iF t 1.03 cos 5t 59 Forced Response i 0 i 0 0 A i t Complete Response i t 1.03 cos5t 59 F t 0 I Natural Response: iN t Ke t Ke 3t L / R 1/ 3 vt vN t vF t Ke 3t 1.03 cos 5t 59 K 0.53 Complete Response 5 t0 1 1 ZC j4 jC j 5 50m 4j 48 90 V 120 8 . 485 45 4 4 j 5.66 45 t 0 vt 8.485 cos5t 45 V Complete Response v0 6V 5 t0 vt 8.485 cos 5t 45 Initial Condition: v0 v0 6V v 0 8.485 cos 45 6V V Complete Response v0 6V t 0 t 0 Reach steady state 4j 48 90 V 120 10 . 74 26 . 6 2 4 j 4.47 63.4 t 0 vF t 10.74 cos5t 26.6 Forced Response V Complete Response v0 6V t 0 Natural Response: vN t Ke t RC Ke 10t RC 2 50mF 0.1 vt vN t vF t Ke 10t 10.74 cos 5t 26.6 K 3.6 V Complete Response Summarizing the results: 8.485 cos 5t 45 vt 10 t 3 . 6 e 10 . 74 cos 5 t 26 . 6 t0 t 0 Three Terminal Network Homework • 6.20 • 6.22 • 6.24 • 6.26 • 6.36 (b) Thank you! Answer • 6.20: 10, 0.002 • 6.22: Z=10Ω, v=40cos500t, i1=5.66cos(500t-45。), i2=4cos(500t+90。) • 6.24:Z=7.07<-45, i=1.41cos(2000t+45 。), vc=14.1cos(2000t-45。), v1=10cos(2000t+90。) • 6.26:Z=18 Ω, v=36cos2000t, iL=2cos(2000t-90。), i2=2.83cos(2000t+45。) • 6.36 (b): L=12mH