Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Princess Nora University Faculty of Computer & Information Systems Computer science Department Operating Systems (CS 340 D) Dr. Abeer Mahmoud Course Title: Operating Systems Code : CS 340 D Prerequisites: CS 212 D Credits: lecture 3 + 1 lab = 3 2 Dr. Abeer Mahmoud Topics This course will introduce you to the field of Operating Systems Main topics which will be covered: 3 Introduction to Operating systems. Processes Threads CPU Scheduling Process Dr. Abeer Mahmoud Topics Main topics which will be covered (cont..) : 4 Process Synchronization Deadlocks Memory Management Virtual Memory File-System Interface File-System Implementation I/O Systems Mass-Storage Structure Dr. Abeer Mahmoud Goals By the end of the course the students should be able to: Explain the objectives and functions of the operating systems. Identify the notion of a process, and a program in execution. Describe the notion of a thread, CPU Scheduling and deadlocks Analyze and evaluate various Scheduling algorithms Explain the function of file systems. Discuss the benefits of various memory-management techniques, including paging and segmentation. Describe the benefits of a virtual memory system and the physical structure of secondary storage devices 5 Dr. Abeer Mahmoud Books and references: Main Text Book: “OPERATING SYSTEM CONCEPTS“, by Abraham Silberschatz and Wesley.Edition, Addison 8th Peter Galvin, • “ OPERATING SYSTEMS: A DESIGNORIENTED APPROACH”, by Charles Crowley, The Latest Edition ,McGraw-Hill, ISBN: 0256151512. • “OPERATING SYSTEMS: DESIGN AND IMPLEMENTATION”, by Andrew S. Tanenbaum, Albert S. Woodhull , 2006. 6 Dr. Abeer Mahmoud Resources 7 Course Blog: http://www. Dr. Abeer Mahmoud Marks Distribution Assessment method (Write an essay - test - a collective project - a final test ...) Assessment Week 1st Med Term 7th week 2nd Med Term 12th week quiz (Lab) Final exam (Theory) “Two academic hours“. Total Grade Percentage from overall grade 15 15 10 week Assignments 2rd, 4th, 6th , 8th and 10th + Attendance exam 10 15% 15% 10% 10% 10 10% After 15 40 40 100 100 9th week - Marks distribution is not final and is subject to change. 8 Dr. Abeer Mahmoud Course Policy NO makeup quizzes. NO midterm makeup exams unless: You must bring a medical excuses from a government hospital. + agree on the excuse from department + agree on the excuse from course coordinator 9 Dr. Abeer Mahmoud Course Policy (cont..) Assignments must be completed individually unless specified otherwise. 10 If groups are permitted, each student should team up with students from the same tutorial section. Cheating is forbidden. Both parties will be penalized in Minus. Dr. Abeer Mahmoud Course Policy (cont..) Email Communication: Anonymous emails will be ignored. When you send an email, you should use your PNU account and make sure to put “OS 340D " in the subject line and identify yourself with your group code and Student ID in the email message (body). Late submissions of any course material is not allowed. It is your responsibility to check the course’s website regularly for any assignments, announcements, etc.. 11 Dr. Abeer Mahmoud Thank you Enjoy the Course & never forget to smile 12 Dr. Abeer Mahmoud (Chapter-1) Introduction Chapter 1 Introduction 1. What Operating Systems Do 2. Computer-System Organization 3. Computer-System Architecture 4. Operating-System Structure 5. Operating-System Operations 6. Process Management 7. Memory Management 8. Storage Management 14 Dr. Abeer Mahmoud OBJECTIVES: To describe the basic organization of computer systems. To provide a grand tour of the major components of operating systems. To give an overview of the many types of computing environments. 15 Dr. Abeer Mahmoud What is an Operating System? 16 A program that acts as an intermediary between a user of a computer and the computer hardware Operating system goals: Execute user programs and make solving user problems easier Use the computer hardware in an efficient manner Dr. Abeer Mahmoud Computer System Structure Consists of four components 1. Hardware : provides basic computing resources (CPU, memory, I/O devices) 2. Operating system: Controls and coordinates (use, hardware, applications) 3. Application programs : “define the ways in which the system resources are used to solve the computing problems of the users” ex: (Word processors, compilers, web browsers, database systems, video games) 4. Users : People, machines, other computers 17 Dr. Abeer Mahmoud Four Components of a Computer System 18 Dr. Abeer Mahmoud The operating system’s Role 1- User View: example OS is designed to Single User personal computer ease of use Multiple User’s mainframe l minicomputer maximize resource utilization Workstations users connected to networks or servers compromise between individual usability and resource utilization. Handheld computers Single user & may connected to networks individual usability and performance per unit of battery life is important as well. Embedded computers If the computers have little or run without user intervention no user view (minimize usability) category 19 Dr. Abeer Mahmoud The operating system’s Role (cont.) 2- System View: OS is a resource allocator • Manages all resources (e.g. CPU time, memory space, file-storage space, I/O devices…etc) • Decides between conflicting requests of many users access the same mainframe or minicomputer 20 OS is a control program • Controls execution of programs to prevent errors • It is especially concerned with the operation and control of I/O devices. Dr. Abeer Mahmoud Operating System Definition Operating System Definition: It is a software that manage the computer hardware and provide an environment for application programs to run “The one program running at all times on the computer” is the kernel. Everything else is either a system program application program 21 Dr. Abeer Mahmoud Computer-System Organization 1. Computer-System Operation 2. Storage Structure 3. I/O Structure 22 Dr. Abeer Mahmoud Computer System Organization 1-Computer-system operation A general-purpose computer system consists of three main components 2- Multiple device controllers: 1-One or more CPU 23 connected through a common bus 3- RAM: connecting to CPU and device controllers through common bus Dr. Abeer Computer System Organization 1-Computer-system operation(cont..) Each device controller is responsible of a specific type of device (e.g. disk drives, audio devices, and video displays). The CPU and the device controllers can execute concurrently, competing for memory cycles . So, a memory controller is provided whose function is to synchronize access to the memory. 24 Dr. Abeer Mahmoud Computer System Organization 1-Computer-system operation(cont..) Computer Startup: bootstrap program is loaded at power-up or reboot Typically stored in ROM or EEPROM, generally known as firmware Initializes all aspects of system Loads operating system kernel and starts execution ROM : read-only memory, Once data has been written onto a ROM chip, it cannot be removed and can only be read. EEPROM: electrically erasable programmable read-only memory. EEPROM is a special type of PROM that can be erased by exposing it to an electrical charge. EEPROM retains its contents even when the power is turned off. 25 Dr. Abeer Mahmoud Computer System Organization 1-Computer-system operation(cont..) Interrupt: It generated from either the hardware or the software Hardware sending a signal to the CPU through system bus. Software send through a system call. The interrupt is signal that gets the attention of the CPU and is usually generated when I/O is required. For example: • hardware interrupts are generated when a key is pressed or when the mouse is moved. • Software interrupts are generated by a program when I/O is required. 26 Dr. Abeer Mahmoud Computer System Organization 2-Storage Structure Main memory – only large storage media that the CPU can access directly Secondary storage – extension of main memory that provides large nonvolatile storage capacity Magnetic disks – rigid metal or glass platters covered with magnetic recording material Disk surface is logically divided into tracks, which are subdivided into sectors The disk controller determines the logical interaction between the device and the computer 27 Dr. Abeer Mahmoud Computer System Organization 2-Storage Structure(cont..) All forms of memory provide an array of words. Each word has its own address. Interaction is achieved through a sequence of load or store instructions to specific memory addresses. The load instruction>>> moves a word from RAM to CPU’s register The store instruction>>> moves the content of a CPU’s register to RAM CPU automatically loads instructions from main memory for execution. 28 Dr. Abeer Mahmoud Computer System Organization More expensive and faster 2-Storage Structure (cont..) 29 volatile can be volatile or non volatile Nonvolatile Dr. Abeer Mahmoud Computer System Organization 3-I/O Structure A large portion of OS code is dedicated to managing I/O, because of: 30 Its importance to the reliability and performance of a system The varying nature of the devices. Dr. Abeer Mahmoud Computer System Organization 3-I/O Structure(cont..) A device controller maintains some local buffer storage and a set of special-purpose registers. The device controller is responsible for moving the data between the peripheral devices that it controls and its local buffer storage. Operating systems have a device driver for each device controller. This device driver understands the device controller 31 Dr. Abeer Mahmoud Computer System Organization 3-I/O Structure(cont..) DC : Responsible for moving data between Device Controller (DC) Peripherals devices that it controls eg: keyboard Local buffer storage + Set of special purpose registers Understand how? OS 32 Device Driver (DD) Dr. Abeer Mahmoud Computer System Organization 3-I/O Structure(cont..) (Algorithm #1) DD loads the appropriate registers within the DC DC, examines the contents of these registers to determine what action to take (such as “read “a character from the keyboard”). DC transfers data from the device to its local buffer. When finish informs DD via an interrupt DD returns control to OS, This form of interrupt-driven I/O is fine for moving small amounts of data otherwise produce high overhead 33 Dr. Abeer Mahmoud Computer System Organization 3-I/O Structure(cont..) (Algorithm #2 moving large data without overhead) 34 What is direct memory access (DMA) ? After setting up buffers, pointers, and counters for the I/O device, DC transfers an entire block of data directly to or from its own buffer storage to memory, with no intervention by the CPU. Only one interrupt is generated per block, to tell the device driver that the operation has completed, rather than the one interrupt per byte generated for low-speed devices. While the device controller is performing these operations, the CPU is available to accomplish other work. Dr. Abeer Mahmoud Computer-System Architecture Single-processor systems : MULTIPROCESSOR SYSTEMS Also known as parallel systems, tightly-coupled systems have two or more processors in close communication, sharing the computer bus and some times the clock, memory, and peripheral devices. Advantages include: 1. Increased throughput : more work is performed 2. Economy of scale : cost less 3. Increased reliability : the failure of one processor will not halt the one CPU system, only slow it down. 35 Dr. Abeer Mahmoud Computer-System Architecture (cont..) MULTIPROCESSOR SYSTEMS – (CONT.): 36 Two types 1. Asymmetric Multiprocessing Each processor is assigned a specific task. master-slave relationship A master processor controls the system; It schedules and allocates work to the slave processors. 2. Symmetric Multiprocessing (SMP) Each processor performs all tasks within the operating system. All CPUs are peers Each processor has its own set of registers & cache All processors share physical memory. Dr. Abeer Mahmoud Symmetric Multiprocessing Architecture 37 Dr. Abeer Mahmoud Computer-System Architecture (cont..) SMP pros (++): many processes can run simultaneously —N processes can run if there are N CPUs—without causing a significant deterioration of performance SMP Cons (--): OS must carefully control I/O to ensure that the data reach the appropriate processor. since the CPUs are separate, one may be sitting idle while another is overloaded, resulting in inefficiencies. All modern operating systems—including Windows, Mac OS X, and Linux—now provide support for SMP. 38 Dr. Abeer Mahmoud Computer-System Architecture (cont..) Multi-cores chips. It is a recent trend in CPU design is to include multiple computing cores on a single chip. Processors were originally developed with only one core. The core is the part of the processor that actually performs the reading and executing of the instruction. Single-core processors can only process one instruction at a time Multi-cores chips can be more efficient than multiple chips with single cores because: 39 on-chip communication is faster than between-chip communication one chip with multiple cores uses significantly less power than multiple singlecore chips. Dr. Abeer Mahmoud A Dual-Core Design Dual-core processor contains two cores (Such as Intel Core Duo). Multi-core systems are especially well suited for server systems such as database and Web servers. 40 Dr. Abeer Mahmoud Operating System Structure 1- Multiprogramming environment: Single program cannot keep CPU and I/O devices busy at all times Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the CPU always has one to execute. Multiprogramming idea is as follows: The operating system keeps several jobs in memory simultaneously . One job selected and run via job scheduling. When it has to wait (for I/O for example), OS switches to another job Eventually, the first job finishes waiting and gets the CPU back. As long as at least one job needs to execute, the CPU is never idle. RAM is too small to accommodate all jobs, the jobs are kept initially on the disk in the job pool. This pool consists of all processes residing on disk awaiting allocation of main memory. 41 Dr. Abeer Mahmoud Memory Layout for Multiprogrammed System 42 Dr. Abeer Mahmoud Operating System Structure( cont..) 2-Time sharing (or multitasking) system: It is a logical extension of multiprogramming. In time-sharing systems, the CPU executes multiple jobs by switching among them, but the switches occur so frequently that the users can interact with each program while it is running. Time sharing requires an interactive computer system The response time should be short ( less than one second) amount of time it takes from when a request was submitted until the first response is produced. 43 system that provides direct communication between the user and the system. Dr. Abeer Mahmoud Operating System Structure( cont..) A time-shared operating system allows many users to share the computer simultaneously. each user is given the impression that the entire computer system is dedicated to his use. Each user has at least one separate program in memory. A process : is a program loaded into memory and executing 44 Dr. Abeer Mahmoud Thank you End of Chapter 1 45 Dr. Abeer Mahmoud