Download FIgures Chapter 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Table 1.1 - The Worldwide Electronics Market ($1,013
Billion) in 1992 [1]
Category
Share (%)
Data processing hardware
23
Data processing software & services
18
Professional electronics
10
Telecommunications
9
Consumer electronics
9
Active components
9
Passive components
7
Computer integrated manufacturing
5
Instrumentation
5
Office electronics
3
Medical electronics
2
M
I
C
R
O
E
L
E
C
T
R
O
N
I
CIRCUIT DESIGN
©RICHARD C. JAEGER 6/5/97
Table 1.2 - Milestones in Electronics
Year Event
1884 American Institute of Electrical Engineers (AIEE)
formed
1895 Marconi first radio transmissions
1904 Fleming Valve (Diode Vacuum Tube)
1906 Pickard - Solid-state Point-contact diode (Silicon)
1906 Deforest - Triode Vacuum Tube (Audion) - Age of
electronics begins
1910-1911
"Reliable" tubes fabricated
1912 Institute of Radio Engineers (IRE) Founded
1907-1927
Diodes and Triodes - First Radio Circuits
1920 Armstrong invents super heterodyne receiver
1925 TV demonstrated
1925 Lilienfeld files patent application on the field-effect
device
M
I
C
R
O
E
L
E
C
T
R
O
N
I
CIRCUIT DESIGN
©RICHARD C. JAEGER 6/5/97
1927-1936 Multigrid Tubes
1933 Armstrong invents FM modulation
1935 Heil receives British patent on a field-effect device
1940 Radar developed during World War II; TV in limited
use
1947 Bipolar Transistors Invented by Bardeen, Brattain &
Shockley at Bell Laboratories
1950 Color TV begins
1952 Shockley describes the unipolar field-effect transistor
M
I
C
R
O
E
L
E
C
T 1952 Commercial production of silicon bipolar transistors at
Texas Instruments
R
O 1956 Bardeen, Brattain & Shockley Receive Nobel Prize for
Invention of Bipolar Transistors
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M 1958 Simultaneous Development of the Integrated Circuit
by Kilby at Texas Instruments & Noyce and Moore at
I
Fairchild Semiconductor
C
1961 First commercial digital IC available from Fairchild
R
Semiconductor
O
1963 AIEE and IRE Merge to become the Institute of
E
Electrical and Electronic Engineers (IEEE) Your
L
Professional Society!
E
1967 First Semiconductor RAM (64 bits) discussed at the
C
IEEE International Solid-Sate Circuits Conference
T
(ISSCC)
R
1968 Introduction of the first commercial IC operational
O
amplifier - the A-709 - by Fairchild Semiconductor
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
1970 1-transistor dynamic memory cell invented by Dennard
M
at IBM 1971Introduction of the 4004 microprocessor
I
by Intel
C
1972 First 8-bit Microprocessor - The Intel 8008
R
1974 First commercial 1 kilobit memory chip
O
1974 Introduction of the 8080 microprocessor
E
1978 First 16-bit Microprocessor
L
1984 Megabit Memory chip
E
1995 Experimental Gb Memory Chip Presented at the IEEE
C
ISSCC
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
10 10
Chip Density (Bits/Chip)
M
10 9
I
10 8
C
R
10 7
O
6
10
E
10 5
L
10 4
E
C
10 3
T
10 2
1965 1970 1975 1980 1985 1990 1995 2000
R
Year
O
F igu re 1.2 - Mem ory ch ip den s it y a s a fu n ct ion of t im e ba s ed u pon firs t
N
pa per pres en t a t ion a t t h e IE E E In t ern a t ion a l S olid-S t a t e
Circu it s Con feren ce (IS S CC)
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
10 7
Number of Transistors
M
P6
Pentium
I
486DX
68040
C
10 6
R
386SX
68030
O
80286
5
10
E
L
8086
E
10 4
8085
C
6800
8080
T
4004
3
10
R
1970
1975
1980
1985
1990
1995
2000
O
Year
N
Figure 1.3 - Microprocessor complexity versus time
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
10
1
Dynamic Memory Feature Size (um)
M
I
C
R
O
10 0
E
L
E
C
T
10 -1
1970 1975 1980 1985 1990 1995 2000
R
Year
O
F igu re 1.4 F ea t u re s ize in dyn a m ic m em ory ch ips vers u s t im e (Cou rt es y
N
IS S CC)
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
Table 1.3 - Levels of Integration
M
Date Historical Reference Components/chip
I
1950 Discrete components
1-2
C
1960 SSI - Small-scale Integration
< 102
R
1966 MSI - Medium-scale integration
102 - 103
O
1969 LSI - Large-scale integration
103 - 104
E
1975 VLSI - Very-large-scale integration 104 - 109
L
1990 ULSI - Ultra-large-scale integration > 109
E
C
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
Amplitude
C
High
R
"1"
Level
O
E
L
Low
"0"
E
Level
t
C
Figure 1.5 - A time varying binary digital signal
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
v(t) or i(t)
C
R
O
E
L
E
t
C
T
Figure 1.6 - An analog signal
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
+
C
Digital-to-Analog
VFS
R
VO
Converter
O
(DAC)
E
L
E
C
( b 1, b2 , b3 , ...nb )
T
Binary Input Data
R
Figure 1.7 - Block diagram representation for a D/A converter
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
C
+
R
Analog-to-Digital
( b 1, b2 , b3 , ...nb )
v
X
Converter
O
Binary Output Data
(ADC)
E
L
E
+ VFS C
Figure 1.8 - Block diagram representation for a A/D converter
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
Quantization Error (LSB)
Binary Output Code
1.5
M
I
111
C
110
0.5
R
101
O
100
E
011
-0.5
L
010
1 LSB
1 LSB
E
001
C
000
-1.5
V
V
V
V
VFS
3VFS
VFS
3V
0
0
FS
FS
FS
FS
FS
T
4
2
2
4
4
4
Input
Voltage
Input Voltage
R
O
1.9 - (a) Input-output relationship and (b) quantization error for 3-bit ADC
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
+
g m v1
i1
i 1
I
v1
C
R
(a) VCCS
(b) CCCS
O
E
+
L
A v1
i1
i 1
v1
E
C
(c) VCVS
(d) CCVS
T
F igu r e 1 .1 0 - Co n t r olled S o u r ces
R
(a ) Vo lt a ge- co n t r olled cu r r en t s ou r ce - (VCC S )
(b )Cu r r en t - co n t r olled cu r r en t s o u r ce - (CCC S )
O
(c) Volt a ge- co n t r o lled vo lt a ge s o u r ce - (VC VS )
N
(d) C u r r en t - co n t r olled volt a ge s o u r ce - (CC VS ).
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
C
R
O
E
v
S
L
E
10 V
C
T
Fi gur e 1 .1 1
R
O
N
I
CIRCUIT DESIGN
v
+
R
1
8 k
1
+
R
iS
2
v2
2 k
-
- A r e s i s t i ve vol t a ge di vi de r
©RICHARD C. JAEGER 6/5/97
M
I
i1
C
i2
+
R
R
R
iS
O
1
2
vs
E
5 mA
3 k
2 k
L
E
C
F igure 1.12 - Current division in a simple network
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
R
1
i1
M
+
20 k 
R
I
S
vO
i 1
vS
C
1 k
R
 = 50
O
E
(a)
L
R TH
E
C
v TH
iN
R
TH
T
R
(b)
O
(c)
F igu r e 1 . 1 3 - (a ) Two-t er m in a l cir cu it a n d it s
N
(b ) Th éven in a n d (c) Nor t on equ iva len t s
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
R
1
C
i1
iX
R
20 k 
O
E
(v = 0)
R
vX
S
S
1
k

i
L
1
E
C
 = 50
T
R
F igu r e 1 .1 4 - A t es t s ou r ce vx is a p p lied t o t h e
O
n et wor k t o fin d R TH .
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
R
1
I
C
i1
20 k 
R
O
vS
E
L
E
C
T
R
Figu re 1.15 - Circu it
O
N
I
CIRCUIT DESIGN
0
i 1
R
S
1 k
iN
 = 50
for det erm in in g sh ort -circu it ou t pu t cu rren t
©RICHARD C. JAEGER 6/5/97
M
I
C
R = 282 
TH
R
R = 282 
i
v
TH
O
N
TH
E
L
-3
v TH = 0.718 v s
i N = (2.55 x 10 S) v s
E
(a)
(b)
C
Figure 1.16 - Completed Thévenin (a) and Norton (b) equivalent circuits for the twoT
terminal network in Fig. 1.13 (a)
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
+
iS
gmv1
R
I
1
v
C
1
3 k
0.1 v
R
1
O
v
S
i2
E
R
L
2
E
2 k
C
T
Figure 1.17 - Circuit containing a voltage-controlled current source
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
Amplitude
I
C
R
O
E
L
E
f
C
0
4.5 MHz
T
Figure 1.18 - Spectrum of a television signal
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
Table 1.3 - Frequencies Associated with Common Signals
M
I
Category
Frequency Range
C
Audible sounds
20 Hz - 20 kHz
Baseband video (TV) signal
0 - 4.5 MHz
R
AM radio broadcasting
540 - 1600 kHz
O
High frequency radio communications 1.6 - 54 MHz
E
VHF television (Channels 2-6)
54 - 88 MHz
FM radio broadcasting
88 - 108 MHz
L
VHF television (Channels 7-13)
174 - 216 MHz
E
UHF television (channels 14 - 69)
470 - 806 MHz
C
Cellular telephones
824 - 892 MHz
Satellite television
3.7 - 4.2 GHz
T
R
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
C
Amplitude
Amplitude
R
O
E VDC
Vo
L
f
E
t
0
0
fo
2f o
3f o
4f o
5f o
2T
3T
T
C
T
(a )
(b)
R
Figu re 1.19 - A periodic s ign a l (a ) a n d it s a m plit u de s pect ru m (b)
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
M
I
C
vs
A
R
O
E
L
Figu re 1.20 - E lect ron ic sym bol for a n
E
C
T
R
O
N
I
CIRCUIT DESIGN
v
o
a m plifier wit h volt a ge ga in A
©RICHARD C. JAEGER 6/5/97
M
I
Antenna
C
R
RF
IF
Audio
FM
Mixer
O
Amplifier
Amplifier
Amplifier
Detector
and F ilter
and F ilter
E
(88 - 108 MHz)
10.7 M Hz
50 Hz - 15 kHz
L
Local
E
Oscillator
C
S peaker
(77.3 - 97.3 MHz)
T
R
Figure 1.21 - Block diagram for an FM radio Receiver
O
N
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN
Amplitude
A
A
A
M
I
f
f
f
C
fL
fH
fH
fL
(c)
(b)
R
(a)
O
Amplitude
E
L
A
A
E
C
f
f
T
fH
fL
R
(e)
(d)
O F igu re 1.22 - Idea l a m plifier frequ en cy res pon s es : (a ) Low-pa s s (b) h igh pa s s (c) ba n d-pa s s (d) ba n d-reject a n d (e) a ll-pa s s
N
ch a ra ct eris t ics
I
©RICHARD C. JAEGER 6/5/97
CIRCUIT DESIGN