* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Mosfetpart2
Resistive opto-isolator wikipedia , lookup
Loudspeaker wikipedia , lookup
Electrification wikipedia , lookup
Power engineering wikipedia , lookup
Three-phase electric power wikipedia , lookup
Two-port network wikipedia , lookup
Alternating current wikipedia , lookup
Loudspeaker enclosure wikipedia , lookup
Power MOSFET wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Current source wikipedia , lookup
Opto-isolator wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Transmission line loudspeaker wikipedia , lookup
Power electronics wikipedia , lookup
Power inverter wikipedia , lookup
Solar micro-inverter wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Current mirror wikipedia , lookup
Memory disambiguation wikipedia , lookup
NMOS Inverter (E-MOSFET Driver and Load) Load iDS V 1.2V Th 2 W 1 m , L 10 m 2 2 W 1 6 A 2 K 6 . 2 x 10 2 L 10 V2 2 Driver V 1.0V Th 1 W m, L11m 1 5 W 4 A 1 5 K 3 . 1 x 10 1 L V2 1 Transistor Characteristics 2 Electron mobility 700 cm /Vsec n vDS 6 Gate oxide thicknes s tox20 nm 2 x 10 cm 7 2 Gate oxide capacitanc e C ox/tox1.77 x 10 F/cm ox 1 W1 W 2 7 2 K C 700 cm /Vsec)( 1 .77 x 10 F/cm ) n ox ( 2 L 2 L W 5 2 6 .2 x 10 A /V L ECES 352 Winter 2007 Ch 10 MOS Digital 1 NMOS Inverter (E-MOSFET Load Transistor) G * Load transistor has its gate connected to its drain so vDS2 = vGS2 (Always) * Triode-saturation boundary at vDSsat2 = vGS2 - VTh2 * Since VTh2 > 0, for load transistor vDS2 > vDSsat2 = vGS2 VTh2 = vDS2 VTh2 * So load transistor is ALWAYS in saturation ! It cannot operate in the triode region ! Load’s drain current is 2 always given i K v V 2 2 GS 2 Th 2 by D D S iDS2 0.08 * 0.06 V 2 K v V 2 DD o Th 2 0.04 * 0.02 So load transistor looks like a vDS vDS 2 2 variable resistance R of size 2 eff 2 iD2 vDS2 ECES 352 Winter 2007 Ch 10 MOS Digital K vDS V 2 2 Th 2 V v DD o 2 K V v V 2 DD o Th 2 2 NMOS Inverter (E-MOSFET Driver and Load) * Voltage transfer characteristic (Vo vs Vi) * Region I (A to B) 0 < Vi < VTh1 iD1 = 0 since drive transistor Q1 is off, i.e. in cutoff. iD2 = 0 since iD2 = iD1 and iD1= 0 * Output voltage is given by Vo= VDD-VDS2 = VDD-VGS2 = VDD-VTh2 = 5V - 1.2V = 3.8V Load V .2V Th 2 1 Driver C VTh1 1.0V vo 5V I 3.8V A B 0 0 VTh1 =1.0V ECES 352 Winter 2007 5V vi Why not 5V ? Assuming a capacitance load on the output, when Q1 (driver) turns off, then Q2 (load) provides current to charge up the capacitance C so the output Vo can rise towards VDD. As Vo rises, VDS2 (still = VGS2) decreases. When VGS2 decreases to VTh2, then Q2 turns off and stops supplying the charging current, so Vo cannot rise further. So Vo cannot rise above VDD - VTh2 = 3.8V Ch 10 MOS Digital 3 NMOS Inverter (E-MOSFET Driver and Load) * Region II (B to C) Driver comes on in saturation mode Load always in saturation mode. Load VTh2 1.2 V W m, L2 10 m 2 1 iD1 K1vGS1 VTh1 K1vi VTh1 2 A K2 6.2x10 2 V 6 iD1 iD2 so Driver K1vi VTh1 K2VDDvo VTh2 2 VTh1 1.0 V W1 5m, L1 1m K1 3.1x104 2 vo VDDVTh2 A V2 2 K1 vi VTh1 K2 So vo 3.8V 50vi 1V vo iDS1 5V Driver B 3.8V A I C A to B C vDS1 ECES 352 Winter 2007 II 0 0 Ch 10 MOS Digital VTh1 =1.0V 5V 4 vi NMOS Inverter (E-MOSFET Driver and Load) * Where is point C? * Driver transistor operating in saturation mode in region II, so point C is where it leaves saturation, i.e. where vDS1 = vo = vDSsat1 = vGS1 - VTh1 = vi - VTh1 K v ( at C ) V V 1v at C ) V v ( at C ) v at C ) V o DD Th 2 i( Th 1 and o i( Th 1so K 2 V V 5 1 . 2 V DD Th 2 v at C ) V 1 . 0 V 1 . 47 V i( Th 1 K 1 50 1 1 K 2 so v ( at C ) v at C ) V 1 . 47 V 1 . 0 V 0 . 47 V o i( Th 1 iDS1 vo 3.8V A B I C A to B vDS1 ECES 352 Winter 2007 II C 0.47V 0 0 Ch 10 MOS Digital VTh1 1.47V =1.0V 5 5V vi NMOS Inverter (E-MOSFET Driver and Load) * * * Where is the equivalent resistance that the load transistor provides in region II ? Recall the load transistor acts like a load resistor with an effective resistance v V v 5 v DS 2 DD o 0 R 2 eff 2 2 62 i K V v V 6 . 2 x 10 A / V 3 . 8 v D 2 2 DD o Th 2 o At point B, vo = 3.8 V and the load transistor is off so v 5 3 . 8 DS 2 R at B 2 eff 2 6 2 i 6 . 2 x 10 A / V 3 . 8 3 . 8 D 2 * iDS1 At point C, vo = 0.47 V so v 5 0 . 47 DS 2 R at C 67 K 2 eff 2 6 2 i 6 . 2 x 10 A / V 3 . 8 0 . 47 D 2 vo 3.8V A B I C A to B vDS1 ECES 352 Winter 2007 II C 0.47V 0 0 Ch 10 MOS Digital VTh1 1.47V =1.0V 6 5V vi NMOS Inverter (E-MOSFET Driver and Load) * Region III (C to D) Driver in triode mode Load VTh2 1.2 V 2vV vv and K W m, L2 10 m 2 1 6 K2 6.2x10 2 vGS iD K V v v 1 12 1 Th 1 DS 1 DS 1 A V2 1 i Th 1 o 2 o iD iD2 and the load isstill in saturat so 1 Driver VTh1 1.0 V 2 vi V K v v K V v V 12 Th 1 o o 2 DD o Th 2 W1 5m, L1 1m 2 This gives v v o( i) A K1 3.1x10 2 V 4 vo iDS1 5V 3.8V A D B I C A to B vDS1 ECES 352 Winter 2007 II C 0.47V 0 Ch 10 MOS III 0 VTh1 Digital=1.0V D 1.47V 7 5V vi NMOS Inverter (E-MOSFET Driver and Load) * Region III (C to D) 2 2 vi V vovo V K K v V 12 Th 1 2 DD o Th 2 2 2 K V vi V voK V K K v 2 V K V 0 1 2 o 2 DD Th 2 1 Th 1 2 DD Th 2 Point D 4 2 5 4 5 2.36 3.16 8 x 10 v 2 x 10 3 .1 x 10v 1 .0 V .95 x 10 0 o i v at D )5V so i( 2 1.81 v 1 .96 v v 0 .28 0 o i o v at D )4 .00 V 3 .96 V0 .04 V o( 2 1.81 1 .96 v 1 .81 1 .96 v 4 (0 .28 ) i i v o 2 When v 3 .8V , v 0 .05 V i o vi0 0.98 20.28 v .98 v 0 .9 v 0 .9 o i i vo iDS1 5V 3.8 V A D B I C III 0.47 V A to B C vDS1 ECES 352 Winter 2007 II 0.05 V 0 Ch 10 MOS 0 VTh1 Digital=1.0 V D 1.47 V 3.8 V 5V 8 vi Noise Margins for NMOS Inverter (E-MOSFET Driver and Load) * Noise margin for low state high high low vo 5V VOH = 3.8 V VOL= 0.05V Vi =VOL = 0.05V ECES 352 Winter 2007 NML= VIL - VOL =1.0V- 0.05V = 0.95V 5V VIL=VTh1 Vi =VOH = 1.0V = 3.8 V vi Ch 10 MOS Digital Measures degree of inverter sensitivity to noise for the low state, i.e. how large a noise signal causes problems. Assumes identical inverter providing input signal Noise Margin = NML = VIL - VOL where VOL = output voltage when input set to VOH VIL = maximum input voltage recognized as a low input For this inverter design, NML is much larger than for resistor load case! Can change NML by changing K’s or VTh1. 9 Noise Margins for NMOS Inverter (E-MOSFET Driver and Load) * low low high Noise margin for high state Noise Margin = NMH = VOH – VIH where VOH = output high voltage when input set to VOL VIH = minimum input voltage recognized as a high input Maybe find VIH by using vo(vi) for region II (Q1 in saturation). Recall vo I VOH = 3.8 V Slope = -1 II K then v V V 1 v V o DD Th 2 i Th 1 K 2 III dv K o 1 50 1This is not possi dv K i 2 NMH= VOH - VIH = 3.8 V- 1.53 V = 2.27 V vo0.98 vi 0.9 0.98 vi 0.920.28 Vo= 0.32 V VOL= 0.05V So must find VIH by using vo(vi) for the device in region III. vi VIH=1.53 V ECES 352 Winter 2007 Vi =VOH = 3.8 V 0.98 dv vi 0.9 o 0.98 1 2 dv i 0.98 vi 0.9 0.28 vi 1.53 VV IH and vo(vi V )0.32 V IH Ch 10 MOS Digital 10 NMOS Inverter (E-MOSFET Driver and Load) Load * Load transistor Q2 acts as a variable load resistance. * Since VTh2 > 0 for load transistor (enhancement type), and vDS2 = vGS2 then vDS2 > vDSsat2 = vGS2 - VTh2 = vDS2 VTh2 * So load transistor is ALWAYS in v 2current is iD K V saturation mode, so its 2 2 GS 2 Th 2 VTh2 1.2 V W m, L2 10 m 2 1 6 K2 6.2x10 A V2 Driver VTh1 1.0 V W1 5m, L1 1m K1 3.1x104 A V2 V 2 K v V 2 DD o Th 2 iDS1 vDS V vo 2 DD * Effective resistance ofLoad QR is2eff(vo) R 2eff 2 2 Load line for variable load resistance. iD2 K V vo V 2 DD Th 2 Ex . D C Atvo 3.5V R .8M 2eff2 A to B Atvo 0.5V R K 2eff60 vDS1 ECES 352 Winter 2007 Atvo 0.05 VR K 2eff 57 Ch 10 MOS Digital 11 Propagation Delays and Switching Times for NMOS Inverters Load VTh2 1.2 V iD2 W m, L2 10 m 2 1 iC 6 K2 6.2x10 A V2 Driver C VTh1 1.0 V W1 5m, L1 1m iD1 K1 3.1x104 A V2 * Output goes from Low to High Driver Q1 turns off Load Q2 provides current to charge up C. dv iC C o iD 2 dt v 2K V 2 iD K V V v 2 2 GS 2 Th 2 2 DD Th 2 o dv o K 2 2 V V v DD Th 2 o dt C * Output goes from High to Low * Driver Q1 turns on to discharge C (So vi = VOH = 3.8 V) * Driver initially in saturation mode, then triode mode * Load Q2 produces current that must be absorbed by Q1. iD1iD2iC dv 2 iCC o andiD2 K2V V DD Th 2v o dt 2 2 Saturation iD1K V V V 1v GS 1 Th 1 K 1 OH Th 1 or Triode K2V 2 vGS1VTh1vDS1vDS iD1K 12 1 1 dv 2 K 2 o K 2 V V v 1 V V or DD Th 2 o OH Th 1 dt C C dv 2 K 2 o K 1 2 V V v V V v v DD Th 2 o 2 OH Th 1 o o dt C C i i driver can discharge the capaci e D 1 D 2 so 2 V OH Th 1v o v o ECES 352 Winter 2007 These equations are not as easily integrated to find vo (vi ). Ch 10 MOS Digital 12 Propagation Delay for NMOS Inverter * Load iD2 iC Driver C iD1 Output goes from High (VOH = 3.8V) to Low (VOL = 0.05V) Driver Q1 (starts from P R S T) At outset, Q1 is off (P), and vDS1 = vo = VOH = 3.8V, vi < VTh1 Driver turns on (P to R) when vGS1 is switched to VOH = 3.8 V. Driver initially in saturation mode, then moves into triode as capacitor discharges and vDS1 decreases as Q1 moves along constant vGS1 characteristic (R S T). Q1 ends at (T) , where vGS1 = vi = 3.8V and vDS1 = vo = VOL = 0.05V. Load Q2 (goes from R’ S’ T’) (always in saturation) Driver Load iDS1 iDS2 T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V R S 0.06 vGS1 = 3.8 V S’ 0.04 0.02 T P vo =VOL vo =VOH = 3.8 V ECES 352 Winter 2007 = 0.05 V vDS1 vGS2 = vDS2 = VDD-VOH = 1.2V vDS2 R’ P’ Ch 10 MOS Digital 13 Approximate Analysis of Propagation Delays * * Load iD2 iC Driver dv i Co i i i C C D 2 D 1 dt where i i discharge the C D 1 D 2 to C * We select point S to be the point where the output voltage has fallen halfway from its peak value VOH to its minimum value VOL. 1 1 v S V V 3 . 8 V 0 . 05 V 1 . 93 V o OL OH 2 2 * We define the high to low propagation time tPHL as the time it takes for the output to go from vo = vo(R) = VOH = 3.8 V to vo=vo(S) = 1/2(VOH +VOL) = 1.93 V. v v(S)vo(R ) C 1 V V iCC o Co V OL OH OH t tPHL tPHL 2 iD1 Driver iDS1 S T Output goes from High (VOH = 3.8V) to Low (VOL = 0.05V) As an approximation, we use average currents for the transistors to calculate an average discharge current for the capacitor. R vGS1 = 3.8 V P vo =VOL vo =VOH = 3.8 V ECES 352 Winter 2007 = 0.05 V C 1 V V 0 OL OH tPHL 2 C1 C 1 V tPHL V V V OL OH OL OH iC2 iD2iD 12 vDS1 C 1 V V 0 OH OL iD iD22 1 Ch 10 MOS Digital 14 Approximate Analysis of Propagation Delays Load iD2 * * Output goes from High (VOH = 3.8V) to Low (VOL = 0.05V) Average current for the DRIVER transistor. * At point R, vi = vi(R) = VOH =3.8V and driver is in saturation region since the output has not fallen so vo = vo(R) = VOH 2 2 i ( R ) K v V K V V D 1 1 GS 1 Th 1 1 OH Th 1 iC Driver C 1 i i ( R ) i ( S ) D 1 D 1 D 1 2 2 4A 3 . 1 x 10 3 . 8 V 1 . 0 V 2 . 4 mA 2 V iD1 * Driver At point S, 1 1 v v S V V 3 .8 V 0 .05 V 1 .93 V o o OL OH 2 2 But v v V V V 3 .8 1 .0 2 .8 V DSsat 1 GS 1 TH 1 OH TH 1 so v v S 1 .93 V v 2 .8 V DS 1 o DSsat 1 iDS1 sothe driver is in the triode region at point S! * S T R vGS1 = 3.8 V P vo =VOH = 3.8 V ECES 352 Winter 2007 * vDS1 So drain current at point S is2 given by 2 i S K 2 v V v v K 2 V V v v D 1 1GS 1Th 1 DS 1DS 1 1 OH Th 1 o o A 4 2 3 . 1 x 10 2 3 . 8 V 1 . 0 V 1 . 93 V ( 1 . 93 V ) 2 . 2 m 2 V So average drain current for1 the driver is 1 i i ( R ) i ( S ) 2 . 4 mA 2 . 2 mA 2 . 3 m D 1 D 1 D 1 2 2 Ch 10 MOS Digital 15 Approximate Analysis of Propagation Delays * * Load iD2 1 i i ( R ') i ( S ') D 2 D 2 D 2 2 iC * Driver C * At point S’, 1 1 v v S V V 3 . 8 V 0 . 05 V 1 . 93 V o o OL OH 2 2 so v V v S 5 V 1 . 93 V 3 . 07 V v DS 2 DD o GS 2 * So drain current at point S’ is given by Load T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V 0.06 vGS1 = 3.8 V 0.04 At point R’, vGS2 = VDD -VOH= 5.0V - 3.8V=1.2V and the load is in saturation but barely on so 2 2 i ( R ' ) K v V K 1 . 2 V 1 . 2 V 0 D 2 2 GS 2 Th 2 2 iD1 iDS2 Output goes from High (VOH = 3.8V) to Low (VOL = 0.05V) Average current for the LOAD transistor. A 2 2 6 i ( S ' ) K v V 6 . 2 x 10 3 . 07 V 1 . 2 V D 2 2 GS 2 Th 2 2 V 5 2 . 2 x 10 A 0 . 022 mA S’ * 0.02 vGS2 = vDS2 = VDD-VOH = 1.2V R’ ECES 352 Winter 2007 vDS2 So average drain current 1 for the load is 1 i i ( R ' ) i ( S ' ) 0 mA 0 . 022 mA 0 . 01 m D 2 D 2 D 2 2 2 Ch 10 MOS Digital 16 Approximate Analysis of Propagation Delays * * Load iD2 i i 2 . 3 mA 0 . 011 mA 2 . 289 mA 2 . 3 m D 1 D 2 iC Driver Output goes from High to Low. Using the average currents for the transistors we get an average discharge current for the capacitor * Defining the high to low propagation time tPHL as the time it takes for the output to go from vo = VOH = 3.8V to vo = 1/2(VOH +VOL) = 1.93V. C 1 t V V PHL OH OL i i 2 D 1 D 2 * For a capacitance load of 10 pF, we get C iD1 Driver * iDS1 C 1 VOHVOL tPHL iD1 iD2 2 10pF 1 3 . 8 V 0 . 05 V 2.3 mA 2 8 8x10 sec0.8 nsec S R vGS1 = 3.8 V * * T P vDS1 This propagation delay is small since the driver’s current is much larger than the load’s current (since K1 >> K2). NOTE: The load in this case (high to low) is delaying (slightly) the transition by supplying current which tends to charge up the capacitance load. vo =VOH = 3.8 V ECES 352 Winter 2007 Ch 10 MOS Digital 17 Propagation Delay for NMOS Inverter * Output goes from Low (VOL= 0.05V) to High (VOH = 3.8V) Load iD2 iC Driver C Driver Q1 turns off and remains off (starts from T P) At outset, vo = VOL = 0.05V, vDS2 =VDD - vo = 5V-0.05V = 4.95V As the load Q2 charges up the capacitor, vo increases and vDS2 (and vGS2 ) decreases, and the load Q2 goes from T’ S’ R’ (Q2 always remains in saturation). At S’, 1 1 v v S V V 3 . 8 V 0 . 05 V 1 . 93 V o o OL OH 2 2 so v S ' V v S 5 V 1 . 93 V 3 . 07 V v S ' DS 2 DD o GS 2 iD1 Driver Load iDS2 iDS1 T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V 0.06 S R vGS1 = 3.8 V 0.04 S’ vGS2 = vDS2 = 3.07V 0.02 T P vo =VOH = 3.8 V ECES 352 Winter 2007 vGS2 = vDS2 = VDD-VOH = 1.2V vDS1 vDS2 R’ Ch 10 MOS Digital 18 Approximate Analysis of Propagation Delays * * Load iD2 iC Output goes from Low (VOL = 0.05V) to High (VOH = 3.8V). As an approximation, we use an average current for the load transistor to calculate an average charging current for the capacitor. iC iD2 iD1 iD2 0 so Driver C dv iC C o iD2 dt iD1 * We select point S’ to be the point where the output voltage has risen halfway from its low value VOL to its peak value VOH. 1 1 v S ' V V 3 . 8 V 0 . 05 V 1 . 93 V o OL OH 2 2 * We define the low to high propagation time tPLH as the time it takes for the output to go from vo = vo(T’) = VOL to vo=vo(S’) = 1/2(VOH +VOL). v v( S ') v ( T ') C 1 o i C o Co V V V C OL OH OL t tPLH tPLH 2 Load iDS2 T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V 0.06 0.04 C 1 V V 0 OH OL tPLH 2 S’ 0.02 vGS2 = vDS2 = VDD-VOH = 1.2V R’ ECES 352 Winter 2007 C 1 1 C t V V V V 0 PLH OH OL OH OL vDS2 i 2 i 2 C D 2 Ch 10 MOS Digital 19 Approximate Analysis of Propagation Delays * Load iD2 * iC Driver C iDS2 At point T’, vGS2 = VDD -VOL=5.0V - 0.05V = 4.95V and the load is in saturation so A 2 2 6 i ( T ' ) K v V 6 . 2 x 10 4 . 95 V 1 . 2 V D 2 2 GS 2 Th 2 2 V 5 8 . 7 x 10 A 0 . 087 mA * At point S’, 1 1 v v S ' V V 3 . 8 V 0 . 05 V 1 . 93 V o o OL OH 2 2 so v v V v S ' 5 V 1 . 93 V 3 . 07 V GS 2 DS 2 DD o T’ 0.08 1 i i ( T ') i ( S ') D 2 D 2 D 2 2 * iD1 Load Output goes from Low (VOL = 0.05V) to High (VOH = 3.8V). Average current for the load transistor. vGS2 = vDS2 = VDD-VOL = 4.95V * So drain current at point S’ is given by A 2 2 6 i ( S ' ) K v V 6 . 2 x 10 3 . 07 V 1 . 2 V D 2 2 GS 2 Th 2 2 V 0.06 0.04 S’ 5 2 . 2 x 10 A 0 . 022 mA vGS2 = vDS2 = 3.07V * 0.02 vGS2 = vDS2 = VDD-VOH = 1.2V R’ ECES 352 Winter 2007 vDS2 So average 1drain current for the load is i i ( T ') i ( S ') D 2 D 2 D 2 2 1 0 . 087 mA 0 . 022 mA 0 . 055 mA 2 Ch 10 MOS Digital 20 Approximate Analysis of Propagation Delays * * Load iD2 dv iCC o iD2 dt iC Driver * Defining the low to high propagation time tPLH as the time it takes for the output to go from vo = VOL = 0.05V to vo = 1/2(VOH +VOL) = 1.93V. C 1 t V V PLH OH OL i 2 D 2 * For a capacitance load of 10 pF, we get C 1 pF 1 10 t V V 3 . 8 V 0 . 05 V PLH OH OL i 2 . 055 mA 2 0 D 2 6 3 . 4 x 10 sec 340 n sec * This propagation delay is very large since the load’s current is much smaller than the driver’s current (since K2 << K1). The load transistor in this case is causing an excessive delay in the transition from low to high output by supplying only a very small current to charge up the capacitance load. Also, as the output voltage rises, vgs2 decreases so the load transistor supplies less and less current to charge up the capacitor. C iD1 Load iDS2 Output goes from Low to High. Use the average current for the load transistor to calculate the charging time. T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V 0.06 vGS1 = 3.8 V 0.04 S’ 0.02 vGS2 = vDS2 = VDD-VOH = 1.2V R’ ECES 352 Winter 2007 vDS2 * Ch 10 MOS Digital 21 Average Propagation Delay for NMOS Inverter * Load iD2 iC * Driver C iD1 * Driver Output goes from High (VOH = 3.8V) to Low (VOL = 0.05V) Driver on, providing discharge current (iD1 = 2.3 mA) Load on, (iD2 = 0.011 mA) delaying output fall Propagation delay tPHL=0.8 nsec. Output goes from Low (VOL = 0.05V) to High (VOH = 3.8V). Driver off (iD1 = 0). Load providing charging current (iD2 = 0.055 mA) Propagation delay tPLH = 340 nsec. Inverter’s average propagation delay is tp 0 . 8 nsec 340 nse t t PHL PLH t 17 ns p 2 2 Load iDS1 iDS2 T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V R S 0.06 vGS1 = 3.8 V S’ 0.04 vGS2 = vDS2 = 3.07V 0.02 T P vo =VOH = 3.8 V ECES 352 Winter 2007 vDS1 vGS2 = vDS2 = VDD-VOH = 1.2V R’ Ch 10 MOS Digital 22 vDS2 Static Power Dissipation for NMOS Inverter * Load iD2 iC Driver * C * * iD1 Driver Output High (VOH = 3.8 V) Driver off (iD1=0), Load on, but iD2= iD1 = 0. No power dissipation in static high output mode (PH=0). Output Low (VOL = 0.05 V). Driver on and operating at point T (vo = 0.05 V). Load on and operating at point T’ where iD2(T’) = 0.087 mA. Power dissipation PL = iD2(T’)VDD = (0.087 mA) 5 V = 0.42 mW. Inverter’s average power dissipation is PD= 1/2(PL+PH) = 0.21 mW. Power delay product DP DP = PD tp -11 = 0.21 mW (170 nsec) = 3.6x10 J = 36 pJ. Load iDS1 iDS2 T’ 0.08 vGS2 = vDS2 = VDD-VOL = 4.95V R S 0.06 vGS1 = 3.8 V S’ 0.04 0.02 T P vo =VOH = 3.8 V ECES 352 Winter 2007 vDS1 vGS2 = vDS2 = 3.07V vGS2 = vDS2 = VDD-VOH = 1.2V vDS2 R’ Ch 10 MOS Digital 23 Comparison of NMOS Inverters * Noise Margins NML = 0.05 V, NMH = 3.17 V * Propagation Delay * Noise Margins NML = 0.95 V, NMH = 2.27 V * Propagation Delay 1 1 1 1 t t t 4 . 5 n sec 14 n sec 10 n sec t t t 0 . 8 n sec 340 n sec 17 n s PD PHL PLH PD PHL PLH 2 2 2 2 * Power Dissipation * Power Dissipation * Power-Delay Product * Power-Delay Product ( 0 10 mW ) ( 0 0 . 42 mW ) 1 1 P P P 5 mW P P P 0 . 21 mW HL H L 2 2 2 2 DP P t 5 mW ( 10 n sec) 50 pJ PD ECES 352 Winter 2007 DP P t 0 . 21 mW ( 170 n sec 36 p PD Ch 10 MOS Digital 24 How to Improve the NMOS Inverter? * How to reduce the tPLH ? * Increase the load current by increasing the load’s W/L ratio. 2 2 i K v V K V v V D 2 2 GS 2 Th 2 2 DD o Th 2 W 1 m , L 10 m 2 2 W 1 6A 2 K 6 .2 x 10 2 2 L V 2 10 * However, that increases the fall time * Noise Margins tPHL since the load provides current NML = 0.95 V, NMH = 2.27 V that the driver must absorb to * Propagation Delay discharge the capacitor. The net effect 1 1 may be some improvement in the tPD. t t t 0 . 8 n sec 340 n sec 170 n sec PD PHL PLH 2 2 * However, there will be an increase in the power dissipation. ( 0 0 . 42 mW ) * Power Dissipation 1 P P P 0 . 21 mW H L 2 2 * Power-Delay Product * Also, the noise margin for the high state will be degraded. DP P t 0 . 21 mW ( 170 n sec) 36 pJ PD ECES 352 Winter 2007 Ch 10 MOS Digital 25 A Modified NMOS Inverter * Increase the load’s W/L ratio from 1/10 to 2 (20 X increase in K2 ). 1 W A A 6 4 K C 6 . 2 x 10 1 . 2 x 10 2 n ox 2 2 2 L V V 2 2 i K v V K V v V D 2 2 GS 2 Th 2 2 DD o Th 2 * New tPLH is 17 nsec vs previous 340 nsec. * New tPHL is 9 nsec vs previous 0.8 nsec. * New tPD is 13 nsec vs previous 170 nsec. * Noise Margins NML = 0.95 V, NMH = 2.27 V * Propagation Delay * New power dissipation is 8.4 mW vs previous 0.21 mW. * New power-delay product is 109 pJ vs 1 1 previous 36 pJ. t t t 0 . 8 n sec 340 n sec 170 n sec PD PHL PLH 2 2 * New VIH = 3.64 V vs previous 1.53 V. * New noise margin for the high state ( 0 0 . 42 mW ) 1 P P P 0 . 21 mW H L NMH = 3.8 - 3.64 = 0.16 V vs 2 2 previous 2.27 V. * Power-Delay Product * Power Dissipation DP P t 0 . 21 mW ( 170 n sec) 36 pJ PD ECES 352 Winter 2007 Ch 10 MOS Digital 26