* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download + x
Telecommunications engineering wikipedia , lookup
History of electric power transmission wikipedia , lookup
Control system wikipedia , lookup
Electrical substation wikipedia , lookup
Rotary encoder wikipedia , lookup
Multidimensional empirical mode decomposition wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Opto-isolator wikipedia , lookup
Transmission line loudspeaker wikipedia , lookup
Fault tolerance wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Rectiverter wikipedia , lookup
Logical Design 1 Zvi Kohavi and Niraj K. Jha Design with Basic Logic Gates Logic gates: perform logical operations on input signals Positive (negative) logic polarity: constant 1 (0) denotes a high voltage and constant 0 a low (high) voltage Synchronous circuits: driven by a clock that produces a train of equally spaced pulses Asynchronous circuits: are almost free-running and do not depend on a clock; controlled by initiation and completion signals Fanout: number of gate inputs driven by the output of a single gate Fanin: bound on the number of inputs a gate can have Propagation delay: time to propagate a signal through a gate 2 Analysis of Combinational Circuits Circuit analysis: determine the Boolean function that describes the circuit • Done by tracing the output of each gate, starting from circuit inputs and continuing towards each circuit output Example: a multi-level realization of a full binary adder C B A AB AB + (A + B)C C0 A+B (A + B)C (A + B + C)[AB + C(A + B)] A+B+C S C0 = AB + (A + B)C = AB + AC + BC S = (A + B + C)[AB + (A + B)C]’ + ABC = (A + B + C)(A’ + B’)(A’ + C’)(B’ + C’) + ABC = AB’C’ + A’BC’ + A’B’C + ABC = A +B +C ABC 3 Simple Design Problems Parallel parity-bit generator: produces output value 1 if and only if an odd number of its inputs have value 1 z z y x xy 0 00 01 11 10 0 1 0 1 P 1 1 0 1 (a) Map. 0 (b) Implementation. P = x’y’z + x’yz’ + xy’z’ + xyz 4 Simple Design Problems (Contd.) Serial-to-parallel converter: distributes a sequence of binary digits on a serial input to a set of different outputs, as specified by external control signals C2 C1 L1 L2 L3 x L4 5 Logic Design with Integrated Circuits Small scale integration (SSI): integrated circuit packages containing a few gates; e.g., AND, OR, NOT, NAND, NOR, XOR Medium scale integration (MSI): packages containing up to about 100 gates; e.g., code converters, adders Large scale integration (LSI): packages containing thousands of gates; arithmetic unit Very large scale integration (VLSI): packages with millions of gates 6 Comparators n-bit comparator: compares the magnitude of two numbers X and Y, and has three outputs f1, f2, and f3 • f1 = 1 iff X > Y • f2 = 1 iff X = Y • f3 = 1 iff X < Y x1x2 y1y2 y1 y2 x1 x2 00 01 11 10 00 2 1 1 1 01 3 2 1 1 11 3 3 2 3 10 3 3 1 2 2-bit comparator f1 f2 f3 (b) Map for f1, f2, and f3. (a) Block diagram. x1 y1 f1 x2 y2 x1 y1 f1 = x1x2y2’ + x2y1’y2’ + x1y1’ = (x1 + y1’)x2y2’ + x1y1’ f2 = x1’x2’y1’y2’ + x1’x2y1’y2 + x1x2’y1y2’ + x1x2y1y2 = x1’y1’(x2’y2’ + x2y2) + x1y1(x2’y2’ + x2y2) = (x1’y1’ + x1y1)(x2’y2’ + x2y2) f3 = x2’y1y2 + x1’x2’y2 + x1’y1 = x2’y2(y1 + x1’) + x1’y1 7 (c) Circuit for f1. 4-bit/12-bit Comparators Four-bit comparator: 11 inputs (four for X, four for Y, and three connected to outputs f1, f2 and f3 of the preceding stage) 12-bit comparator: x1 x4 f1 f2 f3 y1 y4 > = < > = < Inputs from preceding stage (a) A 4-bit comparator. x1 x4 f1 f2 f3 > = < y1 y4 > = < x5 x8 > = < y5 y8 > = < x9 x12 > = < y9 y12 > = < 0 1 0 (b) A 12-bit comparator. 8 Data Selectors Multiplexer: electronic switch that connects one of n inputs to the output Data selector: application of multiplexer • n data input lines, D0, D1, …, Dn-1 • m select digit inputs s0, s1, …, sm-1 • 1 output Select number s2 Data inputs Select number s2 D7 D6 D5 D4 D3 D2 D1 D0 s1 s0 s1 s0 Data inputs D7 D6 D5 D4 D3 D2 D1 D0 Enable Enable z (a) Block diagram. z z (b) Logic diagram. 9 Implementing Switching Functions with Data Selectors Data selectors: can implement arbitrary switching functions Example: implementing two-variable functions D1 D0 Enable z = sD1 + s D0 s If s = A, B = D0, and B = D1, then z = A + B. If s = A, D0 = 1, and D1 = B , then z = A + B. z 10 Implementing Switching Functions with Data Selectors (Contd.) To implement an n-variable function: a data selector with n-1 select inputs and 2n-1 data inputs Implementing three-variable functions: z = s2’s1’D0 + s2’s1D1 + s2s1’D2 + s2s1D3 Example: s1 = A, s2 = B, D0 = C, D1 = 1, D2 = 0, D3 = C’ z = A’B’C + AB’ + ABC’ = AC’ + B’C General case: Assign n-1 variables to the select inputs and last variable and constants 0 and 1 to the data inputs such that desired function results 11 Priority Encoders Priority encoder: n input lines and log2n output lines • Input lines represent units that may request service • When inputs pi and pj, such that i > j, request service simultaneously, line pi has priority over line pj • Encoder produces a binary output code indicating which of the input lines requesting service has the highest priority Example: Eight-input, three-output priority encoder Enable p0 p1 p2 p3 p4 Input lines Outputs p0 p1 p2 p3 p4 p5 p6 p7 z4 z2 z1 z1 Priority encoder p5 p6 p7 z2 z4 z0 (a) Block diagram. 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 (b) Truth table. z4 = p4p5’p6’p7’ + p5p6’p7’ + p6p7’ + p7 = p4 + p5 + p6 + p7 z2 = p2p3’p4’p5’p6’p7’ + p3p4’p5’p6’p7’ + p6p7’ + p7 = p2p4’p5’ + p3p4’p5’ + p6 + p7 z1 = p1p2’p3’p4’p5’p6’p7’ + p3p4’p5’p6’p7’ + p5p6’p7’ + p7 = p1p2’p4’p6’ + p3p4’p6’ + p5p6’ + p7 12 Priority Encoders (Contd.) p0 p1 p2 z1 p3 p4 p5 z2 p6 z4 p7 Request indicator Enable z0 (c) Logic diagram. 13 Decoders Decoders with n inputs and 2n outputs: for any input combination, only one output is 1 Useful for: • • • • Routing input data to a specified output line, e.g., in addressing memory Basic building blocks for implementing arbitrary switching functions Code conversion Data distribution Example: 2-to-4- decoder w x f0 = w x f1 = w x f2 = wx 14 f3 = wx Decoders (Contd.) Example: 4-to-16 decoder made of two 2-to-4 decoders and a gateswitching matrix f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f0 f1 w x 2-to-4 f2 f3 f1 f2 f0 f3 2-to-4 y z 15 Decimal Decoder BCD-to-decimal: 4-to-16 decoder made of two 2-to-4 decoders and a gatew z y x switching matrix w x y z Decimal decoder Enable f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 (a) Block diagram. f0 wx 00 01 11 yz 00 f0 f4 10 f1 f8 f2 01 f1 f5 11 f3 f7 f3 10 f2 f6 f4 f9 (b) Map. f5 f6 f7 f8 f9 Enable (c) Logic diagram. 16 Decimal Decoder (Contd.) Implementation using a partial-gate matrix: y z y z y z y z w x f3 f2 f1 f0 f7 f6 f5 f4 f9 f8 w x w x 17 Implementing Arbitrary Switching Functions Example: Realize a distinct minterm at each output A B C D Enable 4-to-16 line decoder f0 f1 f5 f9 f = (1,5,9,15) f15 18 Demultiplexers Demultiplexers: decoder with1 data input and n address inputs • Directs input to any one of the 2n outputs Data input n-bit address Enable C2 n C1 2 outputs Example: A 4-output demultiplexer L1 L2 L3 19 x L4 Seven-segment Display Seven-segment display: BCD to seven-segment decoder and seven LEDs x1 x2 x3 x4 A B C BCD to 7-segment D E decoder F G A F G B C E D Seven-segment pattern and code: A = x1 + x2’x4’ + x2x4 + x3x4 B = x2’ + x3’x4’ + x3x4 C = x2 + x3’ + x4 D = x2’x4’ + x2’x3 + x3x4’ + x2x3’x4 E = x2’x4’ + x3x4’ F = x1 + x2x3’ + x2x4’ + x3’x4’ G = x1 + x2’x3 + x2x3’ + x3x4’ 20 Sine Generators Combinational sine generators: for fast and repeated evaluation of sine • Input: angle in radians converted to binary • Output: sine in binary Angle x sin( x) x1 x2 x3 x4 z1 z2 z3 z4 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 x1 x2 x3 x4 Sine generator (b) Block diagram. z1 z2 z3 z4 sin( x) z1 = x1’x2 + x1x2’ + x2x3’ + x1’x3x4 z2 = x1x2’ + x3x4’ + x1’x2x4 z3 = x3x4’ + x2x3 + x2x4’ + x2’x3’x4 + x1x4’ z4 = x2’x3’x4 + x2x3’x4’ + x1x2’x3’ + x1x3x4 + x1’x2x4 1 1 0 0 1 1 1 0 0 1 1 21 (a) Truth table. NAND/NOR Circuits Switching algebra: not directly applicable to NAND/NOR logic A B (AB) A B (c) (a) A B A+B (b) (A + B) A B AB (d) NAND and NOR gate symbols 22 Analysis of NAND/NOR Networks Example: circles (inversions) at both ends of a line cancel each other A B C 5 3 4 D E F T = A + (B + C )(D + EF ) B+C [(B + C )(D + EF )] 2 D + EF 1 (EF ) (a) NAND-logic circuit. A B C T = A + (B + C )(D + EF ) B+C (B + C )(D + EF ) D E F D + EF EF (b) Logically equivalent AND-OR circuit. 23 Synthesis of NAND/NOR Networks Example: Realize T = w(y+z) + xy’z’ y z w 1 2 [w(y + z)] y+z 4 x y z 3 T = w(y + z) + xy z (xy z ) (a) First realization. y z 1 y+z w 2 [w(y + z)] 4 y z x 3 (y z ) yz T = w(y + z) + xy z 3 (xy z ) (b) Realization with two-input gates. 24 Design of High-speed Adders Full adder: performs binary addition of three binary digits • Inputs: arguments A and B and carry-in C • Outputs: sum S and carry-out C0 Example: Truth table, block diagram and expressions: A B C S C0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 A B C FA S C0 S = A’B’C + A’BC’ + AB’C’ + ABC = A +B +C C0 = A’BC + ABC’ + AB’C + ABC = AB + AC + BC (b) Block diagram. 1 0 1 0 1 1 0 0 1 0 (a) Truth table for S and C0. 25 Ripple-carry Adder Ripple-carry adder: Stages of full adders • Cf: forced carry • C0(n-1): overflow carry An-1Bn-1 C n-1 FAn-1 C0(n-1) A1 B1 C 1 A0 B0 C f FA1 FA0 C01 Sn-1 S1 S0 Si = Ai + Bi + Ci C0i = AiBi + AiCi + BiCi Time required: • Time per full adder: 2 units • Time for ripple-carry adder: 2n units 26 Carry-lookahead Adder Carry-lookahead adder: several stages simultaneously examined and their carries generated in parallel • Generate signal Di = AiBi • Propagate signal Ti = Ai + Bi • Thus, C0i = Di + TiCi To generate carries in parallel: convert recursive form to nonrecursive C0i = Di + TiCi Ci = C0(i-1) C0i = Di + Ti(Di-1 + Ti-1Ci-1) = Di + TiDi-1 + TiTi-1(Di-2 + Ti-2Ci-2) = Di + TiDi-1 + TiTi-1Di-2 + TiTi-1Ti-2Ci-2 …….. ... C0i = Di + TiDi-1 + TiTi-1Di-2 + … + TiTi-1Ti-2…T0Cf Thus, C0i = 1 if it has been generated in the ith stage or originated in a preceding stage and propagated to all subsequent stages 27 Carry-lookahead Adder (Contd.) Implementation of lookahead for the complete adder impractical: • Divide the n stages into groups • Full carry lookahead within group • Ripple carry between groups Example: Three-digit adder group with full carry lookahead S2 S1 A2 B2 S0 A1 B1 D1 T1 D0 T1 T0 Cf A0 B0 C01 SN2 A B C2 SN1 A B C1 SN0 A0 B0 Cg1 = C02 CN1 CN0 C01 C00 C00 (CN0) (CN1) Cf CN2 Cf T0 D0 D2 T2 D1 T2 T1 D0 T2 T1 T0 Cf Cg1 = C02 (a) Block diagram of initial three-stage group Time taken: • 4 time units for Cg1 • Only 2 time units for Cg2 and other group carries Di = AiBi Ti = Ai + Bi (CN2) (b) The carry networks 28 30-bit Adder Example: divide n stages into groups of three stages • Time taken: 4 + 2n/3 time units • 50% additional hardware for a threefold speedup Cg10 S29 S27 S5 S3 S2 S0 SN29 SN27 SN5 SN3 SN2 SN0 Bi Ai CN29 CN27 Bi Cg9 Cg2 CN5 Bi Ai CN3 Cg1 CN2 Ai Cf CN0 29 Metal-oxide Semiconductor (MOS) Transistors and Gates Complementary metal-oxide semiconductor (CMOS): currently the dominant technology • Two types of transistors: nMOS and pMOS a b a x (a) nMOS transistor a a b (d) pMOS transistor x=1 b a a x=0 x=1 x b b (b) nMOS operation a x x=0 (c) nMOS model b a x b b (e) pMOS operation (f) pMOS model x a a b a x=0 x=1 b a x b b x (g) Complementary switch (h) Complementary switch operation (i) Complementary switch model 30 Transmission Function of a Network Network x y a a y x x a Transmission function b Tab = x + y b Tab = xy b Tab = x CMOS inverter and its transmission functions: 1 (Vdd) 1 x x f f x 0 (Vss) 0 31 CMOS NAND/NOR Gates 1 (Vdd) 1 x x y f f x y y 0 (Vss) 0 (a) CMOS NAND gate and its transmission functions. 1 1 (Vdd) x x y y f f x 0 (Vss) y 0 (b) CMOS NOR gate and its transmission functions. 32 Analysis of Series-parallel Networks Algebra of MOS networks: isomorphic to switching algebra Example: Find the transmission function of the network and its complementary switch based and complex gate CMOS implementations w y z y z a x w x b w y z 1 (Vdd) x pMOS network x w y y w z (a) Tab = x [(y z + z y)w + w + y + x z ]. a 1 w y z x w x y Tab b z w x (b) Tab = x (w + y + z ). c Tab y z x y nMOS network z d (c) Tcd = Tab = x + w yz. z Complementary switch based 0 (Vss) Complex gate 33 Analysis of Non-series-parallel Networks Obtaining the transmission function: • Tie sets: minimal paths between two terminals • Cut sets: minimal sets of branches, when open, ensure no transmission between the two terminals x w i j v y z (a) Tie sets. Tij = wx + wvz + yvx + yz. x w i j v y z (b) Cut sets. Tij = (w + y)(w + v + z)(x + v + y)(x + z). 34 Synthesis of MOS Networks Sneak paths in non-series-parallel networks: undesired paths that may change the transmission function • Occur because of bilateral nature of MOS transistors Example: Design a minimal network with BCD inputs that produces a 1 whenever the input is 3 or a multiple of 3 wx 00 01 11 yz 00 01 10 1 w z 11 1 10 x y x y 1 z (b) Series-parallel realization of T. (a) Map for T = wz + xyz + x yz. w z x z y x (c) Minimal realization of T. Sneak path: z’xx’w – OK since it has no effect on the transmission function 35 Synthesis of MOS Networks (Contd.) Example: Design a minimal network to realize T(w,x,y,z) = (0,3,13,14,15) wx 00 01 11 yz 00 1 01 1 11 1 1 10 1 10 y x w w z y z y z x (b) Series-parallel realization of T. (a) Map for T = wxy + wxz + w x y z + w x yz. y w w x z y z z y x (c) An alternative series-parallel realization of T. w x y y w z y x z (d) A minimum realization of T. 36