Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Coterminal Angles
Angle measured in standard position.
Initial side is the positive x – axis which is fixed.
Terminal side is the ray in quadrant II,
which is free to rotate about the origin.
Counterclockwise rotation
is positive, clockwise rotation is negative.
Coterminal Angles: Angles that have the same
terminal side.
60°, 420°, and –300° are all coterminal.
Standard position and
reference angles
Angles in standard position are between 0 and 360 degrees
Reference angles are between 0 and 90 degrees
Drawing an angle in standard
position
• -2100
-2100
so it’s in the second quadrant
Coterminal angles
• Add
(multiples)
360
• Until we get an angle between 0 and 360
• Examples:
60°, 420°, –300°, 750°,
o
•
•
•
•
60° is already there
420 – 360 = 60°
-300 + 360 = 60°
750-360=390-369=30°
Drawing an angle in standard
position
• -2100
-2100
so it’s in the second quadrant and it is the angle -210 +360 = 150
Now the reference angles:
Quad I
Quad II
180-angle
Angle - 180
Quad III
360-angle
Quad IV
the reference angle for
150:
Quad I
Quad II
180-150=30
Quad III
Quad IV
The unit circle: (x,y) points are
(cosθ,sinθ)
• The 4 quadrantal points:
90
(0,1)
180
(1,0)
(-1,0)
(0,-1)
270
Quick guide for quadrantals
• sin and cos:
sin
cos
0
0
-1
1
-1
0
Using for sin and cos values
• Find sin 270, cos 180, sin 540
sin
cos
0
0
-1
1
-1
0
Using for sin and cos values
• Find sin 270, cos 180, sin 540
sin
cos
0
0
1
-1
-1
• Sin 270 = -1 cos 180 = -1
• sin 540=sin 180= 0
0
Do Now:
• List the ratios of the sides of a right
triangle for the following in terms of
• o,a,h (opposite, adjacent, hypotenuse)
sin
cos
tan
sohcahtoa
• List the ratios of the sides of a right
triangle for the following in terms of
• o,a,h (opposite, adjacent, hypotenuse)
o
sin
h
a
cos
h
o
tan
a
There are 3 more!
Reciprocal identities:
o
h
sin csc
h
0
a
h
cos sec
h
a
o
a
tan cot
a
o
Right Triangle Trig Definitions
B
c
a
C
•
•
•
•
•
•
b
A
sin(A) = sine of A = opposite / hypotenuse = a/c
cos(A) = cosine of A = adjacent / hypotenuse = b/c
tan(A) = tangent of A = opposite / adjacent = a/b
csc(A) = cosecant of A = hypotenuse / opposite = c/a
sec(A) = secant of A = hypotenuse / adjacent = c/b
cot(A) = cotangent of A = adjacent / opposite = b/a
Find the missing side..
• Find the side:
sinθ=2/3
4
θ
6
θ
Find the missing side
• Find the ratios:
sinθ=2/3
52
4
θ
6
2
3
θ
5
Find the cos,sec for each:
• 2 for each problem:
sinθ=2/3
52
4
θ
6
6
52
cos
sec
6
52
2
3
θ
5
5
3
cos
sec
3
5
Triangles formed by points:
Standard Positions
Quad I
Quad II
Quad III
Quad IV
Given a point: (3,-2)
Find the hypotenuse:
c 13
3
-2
Quad IV
Steps-Terminal sides
• Plot the point given and make a right
triangle.
• Use the pythagorean theorem to find the
missing side
• Set up the trig function proportions
Point: (3,-2)
Find the ratios:
h
13
csc
o 2
h
13
sec
a
3
a 3
cot
o 2
3
13
-2
Quad IV
Special Right Triangles
Do Now: find the two ratios with your calculator, express
as a fraction
30°
45°
60°
cos(60 o)
45°
tan(45o)
Special Right Triangles
30°
45°
2
2
3
1
3
cos(30 )
2
1
sin( 30 )
2
3
tan( 30 )
3
Memorize!
1
60°
1
2
2
2
sin( 45 )
2
tan( 45 ) 1
1
2
3
sin( 60 )
2
tan( 60 ) 3
cos( 45 )
cos(60 )
.8660
3
2
AND .7071
2
2
45°
Special Right Triangles
30°
45°
2
2
3
1
1
60°
sec 60
csc 60
sec 45
csc 45
cot 45
cot 60
Memorize!
1
.8660
3
2
AND .7071
2
2
45°
Special Right Triangles
30°
2
3
1
60°
sec 30
A chart for memory
0
sin
0
1
2
cos
1
3
2
tan
0
3
3
30
45
2
2
2
2
1
60
90
3
2
1
2
3
1
0
und
The unit circle: (x,y) points are
(cosθ,sinθ)
• Find x and y:
90
(0,1)
(x,y)
1200
180
(-1,0)
(0,-1)
270
(1,0)
Do Now:
• What part of an hour is 45 minutes?
• If you are to stay in your room for a quarter
of an hour, how many minutes is that?
• Using degree mode, find tan1 3
Degrees,minutes,seconds
• DMS
• Find the tan 300 12’ in the calculator (4
decimals)
• Enter it using the angle menu:
= .5820
Degrees,minutes,seconds
• DMS
• Find the sec 300 13’ in the calculator (4
decimals)
• Enter it using the angle menu:
Degrees,minutes,seconds
• DMS
• Find the sec 300 13’ in the calculator (4
decimals)
• Enter it using the angle menu:
•
= 1.1572
Finding an angle:
• Find the smallest angle when…
• sinθ = .3825
(be in degree mode)
• Use sin-1
Finding an angle:
•
•
•
•
Find the smallest angle when…
sin θ= .3825
(be in degree mode)
Nearest degree = 22
Nearest minute= 220 29’
“arc” means to find an angle:
•
•
•
•
Find the smallest angle when…
arccos (.2395)
(be in degree mode)
Nearest degree =
Nearest minute=
Finding an angle:
•
•
•
•
Find the smallest angle when…
cos θ= .2395
(be in degree mode)
Nearest degree = 76
Nearest minute= 760 9’
34 seconds is more than
½ a minute.
Find the angle to the nearest
minute:
• Find angle A:
7
A
5
Find the angle to the nearest
minute:
• Find angle A:
5
cos1 ( ) 44.4153
7
44 0 24 '55"
7
44 0 25 '
A
5
Conversions-degrees to
radians or radians to degrees
a.2.m.1 & 2
Degrees to radians: Multiply angle by
180
.
Ex. Convert 60 degrees to radians
60
radians
3
180
Radians to degrees: Multiply angle by
180
45
4
Note: 1 revolution = 360° = 2π radians.
180
.
Practice:
• Convert to radians:
• 30, 90,45, degrees
Practice:
• Convert to radians:
• 30, 90,45, degrees
30
90
45
• Convert to degrees:
3 13
,
,
4 9
6
180
180
180
6
2
4
Practice:
• Convert to degrees:
45
3 180
135
4
20
180
20
9 30
13 180
390
6
More practice:
• Convert to radians: (approximate to
hundredths
• 42 degrees
• Convert to degrees: (to nearest tenth)
• 2 radians
Approximating:
• Convert to radians: (approximate to
hundredths
• 42 degrees
7
42
.73 radians
180 30
• Convert to degrees: (to nearest tenth)
• 2 radians
2
180
360
114.6 o
arc length
Arc length = central angle x radius, or
s r.
s
θ
r
Note: The central angle,θ, must be in radian measure.
S=rθ
• Given θ = 2.5 and the radius =10, find the
intercepted arc length.
S=rθ
• Given θ = 2.5 and the radius =10, find the
intercepted arc length.
S = 2.5(10)
S = 25
S=rθ
• Given θ = 500 and the radius =12 cm, find
the intercepted arc length.
But here we don’t have the angle in radians, so we will need to
Convert first….
S=rθ
• Given θ = 500 and the radius =12 cm, find
the intercepted arc length to the nearest
hundredth.
5
50
S=rθ
S = 12(.8727)
180
10.47
18
.8727 radians
S=rθ
• Given θ = 3 and the arc length =12, find
the radius to the nearest hundredth.
S=rθ
12 r(
3
)
Now, solve for r:
S=rθ
• Given θ = 3 and the arc length =12, find
the radius to the nearest hundredth.
12 r(
12
S=rθ
12 r(
3
r
r
3
)
3
3
)
Remember to “flip” and multiply!
3
36
11.5
Do Now:
• How many hours and minutes is 4.5
hours?
• How many is 3.75 hours?
• What decimal part of an hour is 15 min?
Do Now:
• How many hours and minutes is 4.5
hours?
4hr. 30 min
• How many is 3.75 hours?
•
3 hr. 45 min.
• What decimal part of an hour is 15 min?
•
.25
Degrees to DMS
• Degrees minutes seconds:
• Multiply the portion of a degree by 60 for
the minutes and the decimal part left by 60
for the seconds.
• Example:
0
20.36
20 0 .36(60 )
20 0 21.6
20 0 21 .6(60 )
20 0 21 36
DMS to degrees
• Put the minutes/60 and seconds/3600
1101440
14
40
11
60 3600
11.24 0
Do Now: given a sector of a
circle:
• θ = 3 , the arc length =12, find the
radius in terms of
Use: S = r θ
Do Now: given a sector of a
circle:
• θ = and 3 , the arc length =12, find the
radius in terms of
S=rθ
12 r(
3
)
Now, solve for r:
Cofunctions
•
•
•
•
sin 40 = cos 50
sec 20= csc 70
tan 30 = cot 60
What’s the pattern?
Cofunctions
•
•
•
•
•
sin 40 = cos 50
sec 20= csc 70
tan 30 = cot 60
What’s the pattern?
Cofunctions are complimentary
Cofunctions
• sin x = cos (90 – x)
• sec x= csc (90 – x)
• tan x = cot (90 – x)
•
•
•
•
Cofunctions are complimentary
Example: if sin (x+30) = cos (2x)
2x +x + 30 = 90
x=20
Cofunctions
• 1. If sin A = cos 30
Then sin A = ?
2. If tan A = 1.3 then Cot (90-A) = ?
3. If x is an acute angle and sec
csc (4x + 15), solve for x.
x
2
=
Cofunctions
• 1. If sin A = cos 30
then sin A = ?
This means sin 60 which =
3
2
2. If tan A = 1.3 then Cot (90-A) = 1.3
x
2
3. If x is an acute angle and sec =
csc (4x + 15), solve for x
x
2 +4x + 15 = 90 4.5x = 75 x = 16
cofunctions
• 4. If sin 290 10’ = cos A, find A
• 5. If cot 2x = tan θ, find θ in terms of x
cofunctions
• 4. If sin 290 10’ = cos A
• 90 - 290 10’= 600 50’
• 5. If cot 2x = tan θ, find θ in terms of x
• 90 – 2x
Basic Trigonometric Identities
Quotient identities: tan( A)
sin( A)
cos( A)
cos( A)
sin( A)
cot( A)
Reciprocal Identities:
1
csc( A)
sin( A)
1
sin( A)
csc( A)
1
sec( A)
cos( A)
1
cos( A)
sec( A)
1
cot( A)
tan( A)
1
tan( A)
cot( A)
Pythagorean Identities:
sin 2 ( A) cos 2 ( A) 1
tan 2 ( A) 1 sec 2 ( A)
1 cot 2 ( A) csc 2 ( A)
Arc Trig-finding angles…
• Warm up: find the sec
3
Note: We never “flip” angles!
• Be sure you are in the correct mode and
0 to the nearest ten
find
sec 24
thousandth.
Finding exact angles:
• In degree mode, find the sin -1
• Another way to say that is, find
when
2
sin
2
2
2
Finding exact angles:
• Always in degree mode, find the arcsin
• Another way to say that is, find
when
2
sin
2
45
But when else is sin positive?
2
2
Finding exact angles:
• In degree mode, find the arcsin
45, 135
3
,
180 -45
4 4
sin is positive in quadrants I and II
2
2
Finding exact angles:
• In degree mode, find the arctan
60
180 + 60
tan is positive in quadrants I and III
3
Finding exact angles:
• In degree mode, find the arctan
60, 240
tan is positive in quadrants I and III
3
Finding 2 angles…
• Find two angles for each of the following:
• cos θ= -.3100
• tan θ = -1.4180
• Find the first one in the calculator…
Finding 2 angles…
• Find two angles for each of the following:
• cos θ= -.3100
108
• tan θ = -1.4180
55 305
• Hint: Ask yourself when cos and tan are
negative!
Finding 2 angles…
• Find two angles for each of the following:
• cos θ= -.3100
108,252
• tan θ = -1.4180
305,125
Using special triangles
• Set up a reciprocal and find:
2 3
csc
3
Unknown angle AND reciprocal function: “flip” sides!
Using special triangles
• Set up a reciprocal and find:
2 3
csc
3
3
sin
2 3
sin 1 (3 / (2 3)) 60
Special angles:
• Chart:
θ
0
sin
0
1
cos
1
0
tan
0
30
45
1
60
90
und
Special angles:
• Chart:
θ
0
30
sin
0
1
2
cos
1
3
2
tan
0
3
3
45
1
2
2
2
2
60
90
3
2
1
1
2
0
3
und
Using the unit circle.
• Look at the unit circle to help find the
answer to # 62 on page 385.
All Students Take Calculus.
Quad II
Sin +
Tan +
Quad III
Quad I
All +
Cos +
Quad IV
All Students Take Calculus.
Quad I
Quad II
Sin +
Tan +
Quad III
cos(A)<0
sin(A)>0
tan(A)<0
sec(A)<0
csc(A)>0
cot(A)<0
cos(A)>0
sin(A)>0
tan(A)>0
sec(A)>0
csc(A)>0
cot(A)>0
cos(A)<0
sin(A)<0
tan(A)>0
sec(A)<0
csc(A)<0
cot(A)>0
cos(A)>0
sin(A)<0
tan(A)<0
sec(A)>0
csc(A)<0
cot(A)<0
All +
Cos +
Quad IV
Reference Angles-θ
Quad I
Quad II
θ’ = 180° – θ
θ’ = θ
θ
θ
θ’ = 180°+ θ
Quad III
θ
θ’ = 360° – θ
Quad IV
Reference Angles
Quad I
Quad II
θ’ = 180° – θ
θ’ = θ
θ’ = π – θ
θ’ = θ – 180°
θ’ = θ – π
Quad III
θ’ = 360° – θ
θ’ = 2π – θ
Quad IV
Using the unit circle• (cos x, sinx) are the (x,y) values on the
unit circle for the given angles.
• Decide the quadrant the angle is in
• Decide – or + for cos and sin
• Use special right triangles for the
proportion.
Unit circle
•
•
•
•
•
•
•
Radius of the circle is 1.
x = cos(θ)
1 cos( ) 1
y = sin(θ)
1 sin( ) 1
2
2
x
y
1
Pythagorean Theorem:
2
2
cos
(
)
sin
( ) 1
This gives the identity:
Zeros of sin(θ) are n where n is an integer.
Zeros of cos(θ) are 2 n where n is an
integer.
Quick guide for quadrantals
• Sin and cos:
sin
cos
0
0
-1
1
-1
0
Trig identity for tangent
• Identity:
sin
tan
cos
• So….
cos
cot
sin
Quadrantal angles
• Using the unit circle:
(cos ,sin )
sin
tan
cos
• Find the trig functions for 270, 90, 540
degrees.
• (Use coterminal angles between [0 ,360)
solutions
•
•
•
•
•
•
•
270,90, 540:
Sin 270 = -1
Cos 270 = 0
Tan 270 = -1/0 = undefined
Sin 90 = 1
Cos 90= 0
Tan 90 = 1/0 = undefined
540 = 180 degrees
• Sin 540 = 0
• Cos 540 = -1
• Tan 540 = 0/-1 = 0
Using reference angles
• Use the coterminal angle between 0 and
360 degrees
Find the exact value of
sec 570
Using reference angles
• Use the coterminal angle between 0 and
360 degrees.
Find the exact value of
sec 570 sec 210
210
o Has reference angle of 30
3
-
30
-1 2
Using reference angles
• Use the coterminal angle between 0 and
360 degrees.
Find the exact value of
sec 570 sec 210
3
-
30
-1 2
2 3
3
3
2
Find the exact value of…
• csc 2250
Find the exact value of…
• csc 2250
225 has a reference angle of 45 in the third quadrant where
sine is negative.
Using the calculator:
2
2
2
2 2
csc 45
2
2
2
sin 45
csc 225 2
Graphs of sine & cosine
f ( x) A sin( Bx C ) D
g ( x) A cos( Bx C ) D
•
•
•
•
•
Fundamental period of sine and cosine is 2π.
Domain of sine and cosine is .
Range of sine and cosine is [–|A|+D, |A|+D].
The amplitude of a sine and cosine graph is |A|.
The vertical shift or average value of sine and
cosine graph is D.
• The period of sine and cosine graph is 2B .
• The phase shift or horizontal shift is CB .
Sine graphs
y = sin(x)
y = 3sin(x)
y = sin(x) + 3
y = sin(3x)
y = sin(x – 3)
y = sin(x/3)
y = 3sin(3x-9)+3
y = sin(x)
Graphs of cosine
y = cos(x)
y = cos(x) + 3
y = 3cos(x)
y = cos(3x)
y = cos(x – 3)
y = cos(x/3)
y = 3cos(3x – 9) + 3
y = cos(x)
Tangent and cotangent graphs
f ( x) A tan( Bx C ) D
g ( x) A cot( Bx C ) D
• Fundamental period of tangent and cotangent is
π.
• Domain of tangent is x | x 2 n where n is an
integer.
• Domain of cotangent x | x n where n is an
integer.
• Range of tangent and cotangent is .
• The period of tangent or cotangent graph is .
B
Graphs of tangent and cotangent
y = tan(x)
Vertical asymptotes at
x
2
n .
y = cot(x)
Vertical asymptotes at
x n .
Graphs of secant and cosecant
y = sec(x)
n .
Vertical asymptotes at x
2
Range: (–∞, –1] U [1, ∞)
y = cos(x)
y = csc(x)
Vertical asymptotes at x
Range: (–∞, –1] U [1, ∞)
y = sin(x)
n .
Inverse Trigonometric Functions
and Trig Equations
y sin 1 ( x) arcsin( x)
Domain: [–1, 1]
Range: ,
2 2
0 < y < 1, solutions in QI and QII.
–1 < y < 0, solutions in QIII and QIV.
1
y cos ( x) arccos( x)
Domain: [–1, 1]
Range: [0, π]
0 < y < 1, solutions in QI and QIV.
–1< y < 0, solutions in QII and QIII.
y tan 1 ( x) arctan( x)
Domain:
Range: ,
2 2
0 < y < 1, solutions in QI and QIII.
–1 < y < 0, solutions in QII and QIV.
Trigonometric Identities
Summation & Difference Formulas
sin( A B) sin( A) cos( B) cos( A) sin( B)
cos( A B) cos( A) cos( B) sin( A) sin( B)
tan( A) tan( B)
tan( A B)
1 tan( A) tan( B)
Solving trig equations
• Do now:
• Solve for both values of θ:
cos .5
Solving trig equations
• Do now:
• Solve for both values of θ:
cos .5
120
0
• And in quadrant III, 180 +60 = 2400
• Now solve:
2 sin 1 2
solution
• Solving linear trig equations
2 sin 1 2
2 sin 1
1
sin
2
1
sin .5 30,150
Solving trig equations by gcf
factoring or square roots
• Do Now:
1. solve for x: 4x2 = 1
2. factor: 2xy + y
Solving trig equations by gcf
factoring or square roots
• Do Now:
1. solve for x: 4x2 = 1
1
x
4
1
x
2
2
2. factor: 2xy + y
y(2x +1)
Solving trig equations by gcf
factoring or square roots
1. solve for x: 4sin2 x = 1
1
sin x
4
1
sin x
2
2
2.2sinxcos x + sinx=0
sin x(2 cos x 1) 0
sin x 0, 2 cos x 1 0
Find all angles…
Solving trig equations by gcf
factoring or square roots
1. solve for x:
4sin2
x=1
2. 2sinxcos x + sinx=0
1
sin x
4
1
sin x
2
x sin1 .5 30,150
2
x sin1 .5 330,210
sin x(2 cos x 1) 0
sin x 0, 2 cos x 1 0
x 0,180 cos x .5
x 1200 ,2400
{0,120,180,240}
{30,150,210,330}
Solving by trinomial factoring:
• Do Now: solve for x:
c2 5c 4 0
Solving by trinomial factoring:
• Do Now: solve for x:
c 2 5c 4 0
(c 4)(c 1) 0
c 4,c 1
• Apply to trigonometry:
cos 2 5 cos 4 0
(cos 4)(cos 1) 0
cos 4, cos 1
reject, 0 0
Factor and solve
• For x:
[0,360)
2sin2 x sin x 3 0
• Think: 2x2 - x -3 = 0
Factor and solve
• For x:
[0,360)
2 sin 2 x sin x 3 0
(2 sin x 3)(sin x 1) 0
3
sin x , sin x 1
2
0
reject, x 270
Trigonometric Identities
Double Angle Formulas
sin( 2 A) 2 sin( A) cos( A)
cos( 2 A) cos 2 ( A) sin 2 ( A) 1 2 sin 2 ( A) 2 cos 2 ( A) 1
2 tan( A)
tan( 2 A)
2
1 tan ( A)
What to use for solving equations
Double Angle Formulas
sin(2A) 2sin(A)cos(A)
cos(2A) 1 2sin (A)
2
cos(2A) 2 cos (A) 1
2
Substitute and solve…[0, 360)
• sin 2x – sin x = 0
• Use the identity….sin 2x = 2sinxcosx
• 2sinxcosx-sinx=0 (use gcf)
Substitute and solve…[0, 360)
• sin 2x – sin x = 0
• Use the identity….sin 2x = 2sinxcosx
• 2sinxcosx-sinx=0 (use gcf)
•
sinx (2cosx – 1) = 0
• sinx = 0 2cosx – 1 = 0
• x=0,180
2cosx=1
•
cosx = .5
•
x = 60,300
Solve… [0, 360)
cos 2 sin 2
Remember to set = to 0 first!
Solve… [0, 360)
round to the nearest tenth
cos 2 sin 2
cos 2 sin 2 0
cos 2(2 sin cos ) 0
cos 4 sin cos 0
[0, 360)
Solve…
cos 2 sin 2
cos 2 sin 2 0
cos 2(2 sin cos ) 0
cos 4 sin cos 0
cos (1 4 sin ) 0
cos 0 1 4 sin 0
90, 270 4 sin 1
1
sin
4
14.5, 165.5
{14.5, 90, 165.5,270}
Cos2A…
• Choose right one!
cos 2 cos
• Use the one that has cos and set = to 0!
Cos2A…
• Choose
cos2 2 cos2 1
cos 2 cos
2 cos 1 cos
2
2 cos cos 1 0
2
Remember standard form, now factor and solve!
Cos2A…
• Choose
cos2 2 cos2 1
cos 2 cos
2 cos 1 cos
2
2 cos cos 1 0
(2 cos 1)(cos 1) 0
2
Remember standard form, now factor and solve!
Cos2A…
• Choose
cos2 2 cos2 1
cos 2 cos
2 cos 1 cos
2
2 cos cos 1 0
(2 cos 1)(cos 1) 0
cos .5 cos 1
2
120,240 0
Law of Sines & Law of Cosines
Law of sines
sin( A) sin( B) sin( C )
a
b
c
a
b
c
sin( A) sin( B) sin( C )
Use when you have a
complete ratio: SSA.
Law of cosines
c 2 a 2 b 2 2ab cos(C )
b 2 a 2 c 2 2ac cos( B)
a 2 b 2 c 2 2bc cos( A)
Use when you have SAS, SSS.
Law of Sines
Law of sines
sin( A) sin( B) sin( C )
a
b
c
a
b
c
sin( A) sin( B) sin( C )
Use when you have a
complete ratio: SSA or AAS
Law of Sines
Law of sines
sin(A) sin(B) sin(C)
a
b
c
AAS example: “Solve the triangle means, find:
Side b, side c and angle C.
A 36 ,RB 48 , a 8
0
0
Law of Sines
Find all sides and angles to the nearest whole:
sin(A) sin(B) sin(C)
a
b
c
A 360 ,RB 480 , a 8,RC 180 36 48 960
C
8
36
A
48
B
sin 36 sin 48
8
b
Law of Sines
Law of sines
sin(A) sin(B) sin(C)
a
b
c
A 360 ,RB 480 , a 8,RC 960 ,b 10
C
8
36
A
Now solve for c:
48
B
sin 36 sin 48
8
b
b sin 36 8 sin 48
8 sin 48
b
10
sin 36
Law of Sines
Law of sines
sin(A) sin(B) sin(C)
a
b
c
A 360 ,RB 480 , a 8,RC 960 ,b 10
C
8
36
A
48
B
sin 36 sin 96
8
c
csin 36 8 sin 96
8 sin 96
c
14
sin 36
Law of sines:
• Solve the triangle
• A=800, a= 14 ft. , b = 10 ft.
Steps:
B
14
800
A
10
C
1.Draw a triangle
2.Fill in the angles and side
3.Set up proportion and so
Law of sines:
• Solve the triangle
• A=800, a= 14 ft. , b = 10 ft.
B
14
10
sin 80 sin B
14
800
A
10
C
Law of sines:
• Solve the triangle
• A=800, a= 14 ft. , b = 10 ft.
14
10
B
sin 80 sin B
14
14
sin
B
10
sin
80
0
80
C
A
10 sin 80
10
sin B
.7034
14
1
o
B sin (.7034) 45
Now: find angle C and side c:
Law of sines:
• Solve the triangle
• A=800, a= 14 ft. , b = 10 ft.
B
450
C= 180-(80 + 45) =550
14
800
A
10
C
14
c
sin 80 sin 55
14 sin 55
c
12
sin 80
Law of sines
• Example:
A 26 0 , a 7, b 6
1. find sin B
2. findRB
(Round to 4 decimal places)
(To the nearest degree)
Law of sines
• Example:
A 26 0 , a 7, b 6
1. find sin B
2. findRB
(Round to 4 decimal places)
(To the nearest degree)
7
6
1.
sin 26 sin B
7 sin B 6 sin 26
6 sin 26
sin B
.3757
7
1
2. B sin (.3757) 22
0
law of sines-ambiguous case
SSA-possibilities
• How many triangles possible?:
• Answer can be 0,1,or 2
• Ex: A=400, a= 4 ft. , b = 6 ft.
• Steps:
1.draw the triangle with dimensions
2.Set up law of sines and solve for B
law of sines• Solve the triangle for angle B:
• A=400, a= 4 ft. , b = 6 ft.
4
6
sin 40 sin B
B
a=4
400
A
C
b=6
law of sines-ambiguous case
• Solve the triangle:
• A=400, a= 4 ft. , b = 6 ft.
B
a=4
400
A
C
b=6
The supplement of 75 is 105….
4
6
sin 40 sin B
6sin 40
sin B
.9642
4
1
B sin (.9642)
75
o
law of sines-ambiguous case
• How many triangles possible?
• A=400, a= 4 ft. , b = 6 ft.
Make a chart for 2 possiblities:
B
a=4
400
A
Triangle
1
A=40
B=75
C=65
Triangle
2
A=40
B=105
C=35
C
b=6
• 2 Triangles!
Solve the triangle
• A = 300, a=4, c= 10
Solve the triangle
• A = 300, a=4, c= 10
4
10
sin 30 sin c
Zero triangles!- there is an error message!
When only one triangle is
possible
• A=800, a= 14 ft. , b = 10 ft.
14
10
sin 80 sin B
14 sin B 10 sin 80
10 sin 80
sin B
.7034
14
B sin 1 (.7034) 45 o
B’s supplement is 135…
Law of sines:
• Solve the triangle
• A=800, a= 14 ft. , b = 10 ft.
B
45
800
A
Only one triangle possible!
135
45
80
C
Too much already!
When the given angle is obtuse:
• Only 1 or zero triangles possible, just be
sure that the longer side is opposite the
largest angle.
Do now: set up the triangle:
• Given b=5 and c = 7 and A = 650, find a.
Law of Cosines
c a b 2ab cos(C)
2
2
2
b 2 a 2 c2 2accos(B)
a b c 2bccos(A)
2
2
2
Use when you have SAS, SSS.
Law of cosines for a side:
• Given b=5 and c = 7 and A = 650, find a.
a
5
650
7
Using the law of cosines
• Be sure that the side you start with is
opposite the cos of the angle.
Law of cosines for a side:
• Given b=5 and c = 7 and A = 650, find a.
a 5 7 2(5)(7)cos65
a 6.66
2
2
2
a
5
650
7
forces
• Using the law of cosines:
Two forces of 25 newtons and 85
newtons acting on a body form an
angle of 55°.
a. Find the magnitude of the resultant
force, to the nearest hundredth of a
newton.
b.Find the measure, to the nearest
degree, of the angle formed between
the resultant and the larger force.
Picture forces:
• Draw and then complete a parallelogram
25
55
85
Picture forces:
• Make a parallelogram
125
25
x
55
85
85
Picture forces:
• Make a parallelogram
125
85
25
x
55
85
x 2 25 2 85 2 2(25)(85)(cos125)
x 101.43
solve:
• b. Law of sines
125
85
θ
25
101.43
55
85
101.43 25
sin125 sin
25sin125
sin
101.43
0
12
Law of cosines for an angle:
• Given b=7 and c = 8 and a =11, find C.
8
11
C
7
Law of cosines for an angle:
• Given b=7 and c = 8 and a =11, find C.
8 2 112 7 2 2(11)(7)cosC
64 121 49 154 cosC
Must be careful here! Do Not add the -154 to the 121+49
8
11
C
7
Law of cosines for an angle:
• Given b=7 and c = 8 and a =11, find C.
8 2 112 7 2 2(11)(7)cosC
64 121 49 154 cosC
64 170 154 cosC
106 154 cosC
11
106
cosC
C
154
7
.6883 cosC
1
C cos (.6883)
C 46.5 o
8
practice
• Pg. 559
• Find the largest angle for # 13
• Set up diagrams for 19 and 20
Do Now:
• Find the area of the triangle that has a
base of 20 and an altitude of 5.
Area of a triangle
• K = ½ absin C
You must have two sides and the
INCLUDED angle.
Area of a triangle:
• Given b=5 and c = 7 and A = 650, find the
area.
• K = ½ absin C
5
650
7
Area of a triangle:
• Given b=5 and c = 7 and A = 650, find the
area.
• K = ½ absin C
• K = ½ (5)(7)(sin 65)
k 15.86
5
650
7
Apply to a parallelogram:
• Find the area of the parallelogram:
12
60
14
Apply to a parallelogram:
• Find the area of the parallelogram:
• (a parallelogram is 2 triangles)
12
60
14
k .5(12)(14)sin 60
k 72.7
2(72.7) 145.4
Formula for a parallelogram: K=absinC
Missing information
• Find the area of a triangle if e=10,f=6 and
• Angle E = 80…draw it!
Missing information
• Find the area of a triangle if e=10,f=6 and
• Angle E = 80
• We are missing angle G!
G
6
E 80
10
F
Missing information
• Find the area : e=10,f=6,E=80
• We are missing angle G but we can find F
using the law of sines and then find G
G
6
E 80
10
F
10
6
sin 80 sin F
F 36
G 180 (80 36) 64
Missing information
• Find the area : e=10,f=6,E=80
• We are missing angle G but we can find F
using the law of sines and then find G
6
E 80
G
64 10
F
10
6
sin 80 sin F
F 36
G 180 (80 36) 64
K .5(6)(10)(sin 64
K 26.96
Picture forces:
• 2 forces are 28 and 85 and the angle
between them is 55 degrees. Find the
resultant
25
x
55
85
Picture forces:
• Make a parallelogram
125
25
x
55
85
85
Picture forces:
• Make a parallelogram
125
85
25
x
55
85
x 25 85 2(25)(85)cos125
x 101
2
2
2
Trig Applications:
• Use law of sines when you have a
• complete ratio: SSA or AAS
• Use the law of cosines when you have
• SAS or SSS
AMBIGUOUS CASE
• ASS
• Set up the law of sines and draw 2
triangles
• Find the missing angle. Put it in the
first triangle and it’s supplement in the
second triangle
• Decide if both triangles work!
Trigonometric Identities
Half Angle Formulas
1 cos( A)
A
sin
2
2
1 cos( A)
A
cos
2
2
1 cos( A)
A
tan
1 cos( A)
2
A
The quadrant of 2
determines the sign.