Download Genetic Algorithms

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
兔子進化的例子
物競天擇(Selection)
交配(換)(Cross Over)
突變 (Mutation)
進化
Genetic Algorithms


利用自然進化原理的一種搜尋方法。
Three Operators(ex.兔子)
1. Selection(腿、耳好)
2. Crossover
3. Mutation

Two issues
1. Encoding the problem into a chromosome
2. Defining the fitness function
一個簡單的例子
String
No.
F(x)=x2 Fi/Σf
Initial
X
(
population value fitness)
1
2
3
4
01101
11000
01000
10011
Sum
Average
Max
13
24
8
19
169
576
64
361
1170
293
576
0.14
0.49
0.06
0.31
1.00
0.25
0.49
Fi/avg.(f) Roulette
(expected) wheel
(actual)
0.58
1.97
0.22
1.23
4.00
1.00
1.97
1
2
0
1
4.0
1.0
2.0
一個簡單的例子(continued)
Mating
Pool
Mate
Crossover
New
site
population
X value
F(x)=x2
01101
2
4
01100
12
144
11000
1
4
11001
25
625
11000
4
2
11011
27
729
10011
3
2
10000
16
256
Sum=1754
Average=439
Max=729
名詞對照(cf. Goldberg 1989)
Natural
Genetic Algorithm
Chromosome
String
Gene
Feature, character
Allele
Feature value
Locus
String position
Genotype
Structure
Phenotype
A decoded structure
Related documents