Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
兔子進化的例子 物競天擇(Selection) 交配(換)(Cross Over) 突變 (Mutation) 進化 Genetic Algorithms 利用自然進化原理的一種搜尋方法。 Three Operators(ex.兔子) 1. Selection(腿、耳好) 2. Crossover 3. Mutation Two issues 1. Encoding the problem into a chromosome 2. Defining the fitness function 一個簡單的例子 String No. F(x)=x2 Fi/Σf Initial X ( population value fitness) 1 2 3 4 01101 11000 01000 10011 Sum Average Max 13 24 8 19 169 576 64 361 1170 293 576 0.14 0.49 0.06 0.31 1.00 0.25 0.49 Fi/avg.(f) Roulette (expected) wheel (actual) 0.58 1.97 0.22 1.23 4.00 1.00 1.97 1 2 0 1 4.0 1.0 2.0 一個簡單的例子(continued) Mating Pool Mate Crossover New site population X value F(x)=x2 01101 2 4 01100 12 144 11000 1 4 11001 25 625 11000 4 2 11011 27 729 10011 3 2 10000 16 256 Sum=1754 Average=439 Max=729 名詞對照(cf. Goldberg 1989) Natural Genetic Algorithm Chromosome String Gene Feature, character Allele Feature value Locus String position Genotype Structure Phenotype A decoded structure