* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download T-cell response
Survey
Document related concepts
Transcript
ANTIGEN RECOGNITION BY T-CELLS REQUIRES PEPTIDE ANTIGENS AND ANTIGEN PRESENTING CELLS THAT EXPRESS MHC MOLECULES T Y soluble Ag Native membrane Ag Cell surface MHCpeptide complex Peptide antigen Cell surface peptides No T-cell response APC T-cell response REQUIREMENTS FOR ANTIGEN PRESENTATION 1. Expression of MHC molecules 2. ANTIGEN a) Synthesis of viral antigens - intracellular b) Uptake of protein antigens – extracellular 3. „Processing” of antigen generation of peptides suitable for T-cell recognition 4. Presentation of peptides in complex with MHC molecules on the cell surface T-cells with TCR are specialized for recognizing protein – derived fragments THE STRUCTURE OF MHC MEMBERS OF THE IMMUNOGLOBULIN SUPERGENE FAMILY H s s s L s s s s s s s s s s s s s s S s s L MOLECULES CONTAINING ONE OR MORE Ig DOMAIN(S) H s s s s V or C domain related s s s s s s s s s s s s s s s s s s ss ss s s s s ss Thy-1 IgM s s s s s s s s s s s s ss CD79 TCR MHCI s s s s s s s s MHCII ICAM-1 Fc RII s s s s s s CD2 g d e s s s s s s s s a b s s s s s s CD3 CD4 s s s s s s s s ss ss CD8 CD28 s s s s s s s s B-7 Poly-Ig FUNCTION RECOGNITION Ig, TCR, MHC-I, MHC-II ADHESION ICAM-1, ICAM-2, VCAM-1, NCAM BINDING CD4, CD8, CD28, B7, IL-1RI, PDGFR, FcRII, poly-IgR There are two types of MHC molecule, MHC class I and MHC class II. CELL SURFACE EXPRESSION OF MHC ON VARIOUS CELL TYPES Szövet MHC I MHC II T cells B cells Makrophages Dendritic cells +++ +++ +++ +++ +/+++ ++ +++ Epithelial cells + +++ +++ + + + - - Neutrophyls Hepatocytes Kidney Brain Eritrocytes Cell surface expression of MHC is influenced by activation MHC class I molecules are important in immune responses agains viruses and tumour cells MHC class II plays a role in the activation of immunocytes and in the regulation of cell cell cooperation Genes and proteins of MHC Some members of the immunoglobulin supergene family H s s s L s s s s s s s s s s s s s s S s s L EGY VAGY TÖBB Ig DOMÉNT TARTALMAZÓ FEHÉRJÉK H s s s s V vagy C doménhez hasonló s s s s s s s s s s s s s s s s s s ss ss s s s s ss Thy-1 IgM s s s s s s s s s s s s ss CD79 TCR MHCI s s s s s s s s MHCII ICAM-1 Fc RII s s s s s s CD2 g d e s s s s s s s s a b s s s s s s CD3 CD4 s s s s s s s s ss ss CD8 CD28 s s s s s s s s B-7 Poly-Ig FUNKCTION RECOGNITION Ig, TCR, MHC-I, MHC-II ADHESION ICAM-1, ICAM-2, VCAM-1, NCAM BINDING CD4, CD8, CD28, B7, IL-1RI, PDGFR, FcRII, poly-IgR MHC class I and MHC class II molecules bind to different T-cell co-receptors. The structure of MHC proteins THE PEPTIDE BINDING SITE OF MHC CLASS I MOLECULES THE PEPTIDE BINDING SITE OF MHC CLASS II MOLECULES PEPTIDE Cleft geometry -chain -chain Peptide 2-M MHC class I accommodate peptides of 8-10 amino acids Peptide -chain MHC class II accommodate peptides of >13 amino acids The number of different T cell antigen receptors is estimated to be 1,000,000,000,000,000 (1015) How can 6 invariant molecules have the capacity to bind to 1,000,000,000,000,000 different peptides? Peptides can be eluted from MHC molecules Acid elute peptides Eluted peptides from MHC molecules have different sequences but contain motifs Peptides bound to a particular type of MHC class I molecule have conserved patterns of amino acids A common sequence in a peptide antigen that binds to an MHC molecule is called a MOTIF N T Y Q R T R L V C Amino acids common to many peptides tether the peptide to structural features of the MHC molecule ANCHOR RESIDUES Tethering amino acids need not be identical but must be related Y & F are aromatic V, L & I are hydrophobic S Y F P E I H I K Y Q A V T T L S Y I P S A K I R G Y V Y Q Q L S I I N F E K L A P G N Y P A L Side chains of anchor residues bind into POCKETS in the MHC molecule Different types of MHC molecule bind peptides with different patterns of conserved amino acids anchoring amino a cids anchoring amino a cids Decapeptide NH2 P1 P2 P3 P4 P5 P6 COOH P7 P8P9 -2 -1 P1 P4 P6 Octapeptide 11 COOH NH2 COOH NH2 MHCI P9 10 MHCII A flexible binding site? A binding site that is flexible at an early, intracellular stage of maturation Formed by folding the MHC molecules around the peptide. Venus fly trap Floppy Compact Allows a single type of MHC molecule to • bind many different peptides • bind peptides with high affinity • form stable complexes at the cell surface • Export only molecules that have captured a peptide to the cell surface MHC molecules bind peptides according to the following principals • Use a small number of anchor residues to tether the peptidethis allows different sequences between anchors and different lengths of peptide • Adopt a flexible “floppy” conformation until a peptide binds • Fold around the peptide to increase stability of the complex MECHANISM OF ANTIGEN PRESENTATION THE ENDOGENOUS AND EXOGENOUS ROUTES OF ANTIGEN PRESENTATION Tc Th Exogenous Ag Endogenous Ag Endogenous peptides are presented on MHC I (vírus proteins, tumor antigens) Exogenous peptides (toxins, bacterium, allergen) are presented by MHC II The MHC I receptor binds the CD8 receptor, while MHC II binds CD4. Allelic polymorphism is concentrated in the peptide antigen binding site Class I 2 3 1 1 1 2m 2 2 Class II (HLA-DR) Polymorphism in the MHC affects peptide antigen binding Allelic variants may differ by 20 amino acids Cytosol-derived peptides are presented by MHCI receptors Degradation of endogenous proteins in the (immun)proteosomes TAP: Transporter associated With antigen processing Multiple proteins help Ag presentation of MHCI Trimming of antigenic peptides by ERAP Presentation of extracellular (Exogen) peptides bemutatása (MHCII prezentáció) Invariant chain protects the binding site of MHCII until it reaches the appropriate compartment DMA/DMB INVARIÁNS LÁNC (Ii) 1. Chaperon – konformáció 2. Peptidkötőhely gátlása 3. Szállító/visszatartó molekula 1. A peptidet befogadó konformáció fenntartása 2. A CLIP és az exogén fehérjékből származó peptidek lecserélése The biological function of MHC proteins AZ MHC FUNCTIONS – Presentation of peptides– self/altered self/foeign peptides – Continous expression of self-peptidesto monitor cellular health – Determination of immunological self • Self MHC + self peptide – individual MHC pluss és saját peptid • Allogeneic response to fotreign MHC (transplantation) • Self MHC– autolgous foreign MHC allogeneic activation. Az The ratio of alloreactive T-cells is very high: 1-10% – A differentiation and selection of developing thymocytes (in the thymus) – promotion of T-limphocyte survival in the priphery week” tonic” signals induced by MHC / TCR interactions provide survival signals – Inhibitory ligands for NK cells, maintainance of host cell integrity. AZ MHC restriction T-sejt T-sejt TCR TCR M HC MHC MHC APC APC APC T-sejt TCR TCR/ MHC + peptid complex recognized A single TCR recognize a single MHC-peptid komplex The same peptide presented on a different MHC is not recognized. The same MHC molecule with a different peptide is not recognized by a given TCR (other TCRs may recognize) Experiment of Peter DOHERTY & Rolph ZINKERNAGEL 1976 Vírus B + Y sejtek Virus A T - CELLS T T T T T T T MICE Y Vírus A + Y sejtek T T MICE X Virus A + X cells Vírus A + X cells T T Cells infected with a virus are only killed if the infected cell and virus-specific T cells are from the same animal or strain. (The MHC needs to be recognized by the CTL cells ------ MHC restriction ). Tissue compatibility is encoded by the MHC genes and tissue rejection requires the presence of T cells No T cells MiceY Thymec tomy MiceX Mice X No rejection The MHC locus MHC protein (HLA)- coding genes The full sequence and the map of the human MHC locus HUMAN GENOME PROJECT 3,838,986 bp 224 gene 6 kromoszóma MHC sequencing consortium Nature 401, 1999 http://webace.sanger.ac.uk/cgi-bin/ace/pic/6ace?name=MHC&class=Map&click=400-1 STRUCTURE OF THE MHC 6 kromoszóma rövid karja MHC 15 kromoszóma 2m Class II Class II DMA/B 21-hydroxilase C2/C4 LMP TAP DP B2 A2 B1 A1 DN DO A B Klasszikus MHC gének Class III POLIMORPHIC ON PROFESSIONAL APC C E A G F DR B1 B2 B3 (B4) A Non- classical MHC genes E, G, F I osztály ALL NUCLEATED CELLLS HLA – DR, DP, DQ B HSP MICA/B DQ B2 A2 B1 A1 HLA – Human Leukocyte Antigen system HLA –A, B, C TNF Class I Non polymorphic genes Class II Class III INHERITENCE OF CLASS I AND CLASS II MHC GENES HUMAN LEUKOCYTE ANTIGEN A24 A11 HLA A1 A2 Ko-domináns öröklésmenet A24 A2 A24 A1 1. B27 C1 C6 B8 2. A11 A1 A11 A2 4. 3. transz transz A24 A1 α1β1 I osztály EVERY CELL B8 C1 A24 α2β2 II osztály PROFESSIONAL APC a1 b1 a2 b2 cisz transz B27 C6 A1 cisz DQ1 DQ2 POLIMORPHYSM OF MHC IN HUMAN POPULATIONS A polimorfizmus (allélek) száma 872 CLASS I 1652 allels ~6 x 1015 combinations 506 Frequency (%) 274 A B C 466 CLASS II 688 allels 114 15 25 66 2 DR DP DQ Allels CAU AFR ASI HLA-A1 15.18 5.72 4.48 HLA- A2 28.65 18.88 24.63 HLA- A3 13.38 8.44 2.64 HLA- A28 4.46 9.92 1.76 HLA- A36 0.02 1.88 0.01 In reality allels are not inherited randomy. Allels are linked, and there must have been strong selection favoring certain allelic variants. Nonrandom distribution. Classical MHC genes are inherited as haplotypes Parents DP-1,2 DQ-3,4 DR-5,6 B-7,8 C-9,10 A-11,12 DP DP DQ DR DQ DR BC BC DP-9,8 DQ-7,6 DR-5,4 B-3,2 C-1,8 A-9,10 DP-1,8 DQ-3,6 DR-5,4 B-7,2 C-9,8 A-11,10 A A Offspring X DP DQ DR BC A DP DQ DR BC A DP-1,9 DQ-3,7 DR-5,5 B-7,3 C-9,1 A-11,9 DP-2,8 DQ-4,6 DR-6,4 B-8,2 C-10,8 A-12,10 DP-2,9 DQ-4,7 DR-6,5 B-8,3 C-10,10 A-12,9 DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A DP DQ DR BC A MHC MOLECULES ARE EXPRESSED WITH BOUND PEPTIDES DERIVED FROM SELF OR NON-SELF PROTEINS Kidney epithelial cell B-cell, macrophage, dendritic cell Present intra- and extracellular environment Liver cell Present intracellular environment Class I MHC Peptides of restricted size, which derive from cytosolic or nuclear proteins Class II MHC Overlapping peptides of various sizes, which derive from membrane proteins 70% derives from MHC molecules MHC Polimorphysm is maintained by the presence of pathogens THE OUTCOME OF INFECTION IN A POPULATION WITH POLYMORPHIC MHC GENES Example: If MHC X was the only type of MHC molecule MHC-Gen MHC XX v v Pathogen that evades MHC X v Population threatened with extinction V – virus infection v v v v v v v v v v v v v v v v v v v v v v Population is protected