Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
UNIT B: Human Body Systems Chapter 8: Human Organization Chapter 9: Digestive System Chapter 10: Circulatory System and Lymphatic System Chapter 11: Respiratory System Chapter 12: Nervous System Chapter 13: Urinary System: Section 13.2 Chapter 14: Reproductive System UNIT B Chapter 13: Urinary System Chapter 13: Urinary System What is the role of the kidneys in the body? How would problems in the collecting ducts of the nephrons cause kidney failure? Born with Bad Kidneys. The kidney on the left is normal. The kidney on the right is from a person who has polycystic kidney disease (PKD). In PKD, cysts form within the collecting ducts of the nephrons, which can lead to kidney failure. A kidney transplant is required to treat PKD. TO PREVIOUS SLIDE Polycystic kidney disease seems to cause more serious problems in people of African descent, especially those who have sickle cell disease. Sickle cell is mainly a disease of the red blood cells. What does this have to do with the kidneys? UNIT B Chapter 13: Urinary System Section 13.2 13.2 Anatomy of the Kidney and Excretion The kidney’s blood supply is supported by many branches of the renal vein and renal artery. Figure 13.3 Anatomy of the kidney. a. A lengthwise section of the kidney showing the blood supply. Note that the renal artery divides into smaller arteries, and these divide into arterioles. Venules join to form small veins, which form the renal vein. TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System A kidney has three regions. • Renal cortex: outer, granulated layer • Renal medulla: contains cone-shaped tissue masses called renal pyramids • Renal pelvis: central space that is continuous with the ureter Figure 13.3 Anatomy of the kidney. c. The same section as (a) without the blood supply. Now it is easier to distinguish the renal pelvis, medulla, and cortex, which connects with the ureter. TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System TO PREVIOUS SLIDE Section 13.2 Figure 13.3 Anatomy of the kidney. a. A lengthwise section of the kidney showing the blood supply. Note that the renal artery divides into smaller arteries, and these divide into arterioles. Venules join to form small veins, which form the renal vein. b. An enlargement showing the placement of nephrons. c. The same section as (a) without the blood supply. Now it is easier to distinguish the renal pelvis , medulla, and cortex, which connects with the ureter. d. A lengthwise section of an actual kidney. UNIT B Chapter 13: Urinary System Anatomy of a Nephron The kidney is composed of over 1 million nephrons, also known as renal or kidney tubules. Figure 13.3 Anatomy of the kidney. b. An enlargement showing the placement of nephrons. TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Blood Supply in a Nephron Each nephron has it own blood supply. • From the renal artery, an afferent arteriole leads to the glomerulus, a knot of capillaries inside the glomerular capsule • Blood leaving the glomerulus enters the efferent arteriole, which takes blood to the peritubular capillary network, before exiting through the renal vein TO PREVIOUS SLIDE Section 13.2 Figure 13.4 Nephron anatomy. a. You can trace the path of blood through a nephron by following the black arrows. UNIT B Chapter 13: Urinary System Parts of a Nephron Glomerular capsule (Bowman’s capsule) • Inner layer composed of cells called podocytes • Spaces between podocytes allow small molecules from the glomerulus to enter the glomerular capsule TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Parts of a Nephron Proximal convoluted tubule (PCT) • Lined with cuboidal epithelial cells that have packed microvilli to increase the surface area for reabsorption o Also contain several mitochondria to carry out active reabsorption of substances TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Parts of a Nephron Loop of Henle • Also known as the loop of the nephron • Consists of a descending limb and an ascending limb • Lined with simple squamous epithelium TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Parts of a Nephron Distal convoluted tubule (DCT) • Composed of cuboidal epithelial cells that lack microvilli but have many mitochondria • Helps move molecules from the blood into the tubule (tubular secretion) • The DCTs of many nephrons enter one collecting duct • Collecting ducts carry urine to the renal pelvis TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System TO PREVIOUS SLIDE Figure 13.4 Nephron anatomy. Section 13.2 UNIT B Chapter 13: Urinary System Section 13.2 Urine Formation Urine formation is divided into the following processes: • Pressure filtration: water, salts, nutrients, and wastes move from the glomerulus to the inside of the glomerular capsule • Selective reabsorption: nutrient and salt molecules are actively reabsorbed from the convoluted tubules into the blood of the peritubular capillary network • Tubular excretion: certain molecules are actively secreted from the blood in the peritubular capillary network into the convoluted tubules TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System Figure 13.5 Processes in urine formation. The three main processes in urine formation are described in boxes and colour-coded to arrows that show the movement of molecules into or out of the nephron at specific locations. In the end, urine is composed of the substances within the collecting duct (see blue arrow). TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Pressure Filtration Pressure filtration occurs when blood enters the afferent arteriole and the glomerulus. • Due to blood pressure, water and small molecules move from the glomerulus to the inside of the glomerular capsule o These filterable blood components form the glomerular filtrate TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Section 13.2 Selective Reabsorption In selective reabsorption, nutrients and ions from the glomerular filtrate in the convoluted tubules are reabsorbed into the blood of the peritubular capillary network. Examples: • Na+ ions are actively reabsorbed into the blood, with Cl- ions following passively o This reabsorption of salt (NaCl) results in water moving passively from the tubule into the blood • Glucose and amino acids are actively reabsorbed into the blood almost exclusively at the proximal convoluted tubule TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System Section 13.2 Selective Reabsorption The glomerular filtrate that enters the proximal convoluted tubule is divided into two portions. • Reabsorbed filtrate components: reabsorbed from the tubule into blood • Nonreabsorbed filtrate components: continue to pass through the nephron to be processed into urine (become the tubular fluid that enters the loop of Henle) TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System Section 13.2 Tubular Excretion Tubular excretion is another way substances are removed from blood in the peritubular capillary network and added to the tubular fluid. • Hydrogen ions, potassium ions, creatinine, and certain drugs are removed by active transport from the blood in the peritubular capillary network into the convoluted tubules • The resulting urine contains: o Substances that have undergone glomerular filtration but have not been reabsorbed o Substances that have undergone tubular excretion TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System Section 13.2 Check Your Progress 1. Identify the parts of a nephron that are found in the renal cortex and the renal medulla. 2. Explain the difference in microscopic structure which suggests that the PCT, but not the DCT, is specialized for reabsorption. TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System Section 13.2 Check Your Progress 3. Explain how the kidney uses the processes of diffusion, passive transport, and active transport. 4. Explain where in the nephron, and by what process, glucose is normally returned from the glomerular filtrate to the blood. TO PREVIOUS SLIDE UNIT B Chapter 13: Urinary System TO PREVIOUS SLIDE Section 13.2 UNIT B Chapter 13: Urinary System TO PREVIOUS SLIDE Section 13.2